Aga DS, et al. Determination of the persistence of tetracycline antibiotics and their degradates in manure-amended soil using enzyme-linked immunosorbent assay and liquid chromatography-mass spectrometry. J Agric Food Chem. 2005;53:7165–71.
CAS
PubMed
Google Scholar
Allendorf MD, Bauer CA, Bhakta RK, Houk RJT. Luminescent metal–organic frameworks. Chem Soc Rev. 2009;38:1330–52.
CAS
PubMed
Google Scholar
Bågenholm R, Hagberg H, Kjellmer I. Impact of reoxygenation with oxygen and air on the extent of the brain damage after hypoxia-ischaemia in neonatal rats. Acta Paediatr Int J Paediatr. 1996;85:1228–31.
Google Scholar
Baumann AE, Burns DA, Liu B, Thoi VS. Metal–organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Commun Chem. 2019;2:1–14.
Google Scholar
Bazargan M, Ghaemi F, Amiri A, Mirzaei M. Metal–organic framework-based sorbents in analytical sample preparation. Coord Chem Rev. 2021;445: 214107.
CAS
Google Scholar
Ben-Amram Y, Riskin M, Willner I. Selective and enantioselective analysis of mono- and disaccharides using surface plasmon resonance spectroscopy and imprinted boronic acid-functionalized Au nanoparticle composites. Analyst. 2010;135:2952–9.
CAS
PubMed
Google Scholar
Bin Q, Wang M, Wang L. Ag nanoparticles decorated into metal–organic framework (Ag NPs/ZIF-8) for electrochemical sensing of chloride ion. Nanotechnology. 2020;31:125601–09.
Buso D, et al. Highly luminescent metal–organic frameworks through quantum dot doping. Small. 2012;8:80–8.
CAS
PubMed
Google Scholar
Chandra R, Nath M. Controlled synthesis of AgNPs@ZIF-8 composite: Efficient heterogeneous photocatalyst for degradation of methylene blue and congo red. J Water Process Eng. 2020;36:101266.
Google Scholar
Ghosh R, Sahoo AK, Ghosh SS, Paul A, Chattopadhyay A. Blue-emitting copper nanoclusters synthesized in the presence of lysozyme as candidates for cell labeling. ACS Appl Mater Interfaces. 2014;6(6):3822–3828.
Chen JL. Determination of tetracycline using imprinted polymethacrylates along with fluorescent CdTe quantum dots on plastic substrates. Microchim Acta. 2017;184:1335–43.
CAS
Google Scholar
Chen L, Luque R, Li Y. Controllable design of tunable nanostructures inside metal–organic frameworks. Chem Soc Rev. 2017a;46:4614–30.
CAS
PubMed
Google Scholar
Chen T, et al. Crystallization-induced emission enhancement: a novel fluorescent Au–Ag bimetallic nanocluster with precise atomic structure. Sci Adv. 2017b;3:1–8.
Google Scholar
Chen L, Luque R, Li Y. Encapsulation of metal nanostructures into metal–organic frameworks. Dalt Trans. 2018a;47:3663–8.
CAS
Google Scholar
Chen TT, Yi JT, Zhao YY, Chu X. Biomineralized metal–organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins. J Am Chem Soc. 2018b;140:9912–20.
CAS
PubMed
Google Scholar
Ameen SSM, Mohammed NMS, Omer KM. Visual monitoring of silver ions and cysteine using bi-ligand Eu-based metal organic framework as a reference signal: Color tonality. Microchem J. 2022;181:107721.
Chin M, et al. Rhodamine B degradation by nanosized zeolitic imidazolate framework-8 (ZIF-8). RSC Adv. 2018;8:26987–97.
CAS
PubMed
PubMed Central
Google Scholar
Chopra I, Roberts M. Tetracycline Antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65:232–60.
CAS
PubMed
PubMed Central
Google Scholar
Conzuelo F, Gamella M, Campuzano S, Reviejo AJ, Pingarrón JM. Disposable amperometric magneto-immunosensor for direct detection of tetracyclines antibiotics residues in milk. Anal Chim Acta. 2012;737:29–36.
CAS
PubMed
Google Scholar
Cui Y, Yue Y, Qian G, Chen B. Luminescent functional metal–organic frameworks. Chem Rev. 2012;112:1126–62.
CAS
PubMed
Google Scholar
Cui Y, et al. Metal–organic Frameworks as Platforms for Functional Materials. Acc Chem Res. 2016;49:483–93.
CAS
PubMed
Google Scholar
Doonan C, Riccò R, Liang K, Bradshaw D, Falcaro P. Metal–organic frameworks at the biointerface: synthetic strategies and applications. Acc Chem Res. 2017;50:1423–32.
CAS
PubMed
Google Scholar
Düren T, Snurr RQ. Assessment of isoreticular metal–organic frameworks for adsorption separations: a molecular simulation study of methane/n-butane mixtures. J Phys Chem B. 2004;108:15703–8.
Google Scholar
Fahelelbom KMS. Analysis of certain tetracyclines and oxytetracyclines through charge transfer complexation. Am J Pharmacol Toxicol. 2008;3:212–8.
CAS
Google Scholar
Gao C, et al. Rational design microporous pillared-layer frameworks: syntheses, structures and gas sorption properties. CrystEngComm. 2009;11:177–82.
CAS
Google Scholar
Ghaee A, Karimi M, Lotfi-Sarvestani M, Sadatnia B, Hoseinpour V. Preparation of hydrophilic polycaprolactone/modified ZIF-8 nanofibers as a wound dressing using hydrophilic surface modifying macromolecules. Mater Sci Eng C. 2019;103:109767–770.
Han H, He Z. Chemiluminescence determination of tetracyclines using a permanganate system. Anal Sci. 1999;15(5):467–70.
CAS
Google Scholar
Han X, et al. Controlled synthesis of concave cuboctahedral nitrogen-rich metal–organic framework nanoparticles showing enhanced catalytic activation of epoxides with carbon dioxide. CrystEngComm. 2015;17:8596–601.
CAS
Google Scholar
Han TT, Yang J, Liu YY, Ma JF. Rhodamine 6G loaded zeolitic imidazolate framework-8 (ZIF-8) nanocomposites for highly selective luminescent sensing of Fe3+, Cr6+ and aniline. Microporous Mesoporous Mater. 2016;228:275–88.
CAS
Google Scholar
Hao J, et al. Ratiometric fluorescent detection of Cu2+ with carbon dots chelated Eu-based metal–organic frameworks. Sensors Actuators B Chem. 2017;245:641–7.
CAS
Google Scholar
Hoseinpour V, Shariatinia Z. Applications of zeolitic imidazolate framework-8 (ZIF-8) in bone tissue engineering: a review. Tissue Cell. 2021;72:101588.
CAS
PubMed
Google Scholar
Hu Y, Kazemian H, Rohani S, Huang Y, Song Y. In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chem Commun. 2011;47:12694–6.
CAS
Google Scholar
Hu M, et al. In-situ fabrication of ZIF-8 decorated layered double oxides for adsorption and photocatalytic degradation of methylene blue. Microporous Mesoporous Mater. 2018a;271:68–72.
CAS
Google Scholar
Hu X, Liu X, Zhang X, Chai H, Huang Y. One-pot synthesis of the CuNCs/ZIF-8 nanocomposites for sensitively detecting H2O2 and screening of oxidase activity. Biosens Bioelectron. 2018b;105:65–70.
CAS
PubMed
Google Scholar
Hu X, et al. A molecularly imprinted fluorescence nanosensor based on upconversion metal–organic frameworks for alpha-cypermethrin specific recognition. Microchim Acta. 2020;187:632. https://doi.org/10.1007/s00604-020-04610-2.
Jalili R, Khataee A, Rashidi MR, Luque R. Dual-colored carbon dot encapsulated metal–organic framework for ratiometric detection of glutathione. Sensors Actuators B Chem. 2019;297:126775.
CAS
Google Scholar
Jeon M, Kim J, Paeng KJ, Park SW, Paeng IR. Biotin-avidin mediated competitive enzyme-linked immunosorbent assay to detect residues of tetracyclines in milk. Microchem J. 2008;88:26–31.
CAS
Google Scholar
Jing HP, Wang CC, Zhang YW, Wang P, Li R. Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv. 2014;4:54454–62.
CAS
Google Scholar
Khataee A, Jalili R, Dastborhan M, Karimi A, Ebadi Fard Azar A. Ratiometric visual detection of tetracycline residues in milk by framework-enhanced fluorescence of gold and copper nanoclusters. Spectrochim Acta Part A Mol Biomol Spectrosc. 2020;242:118715.
CAS
Google Scholar
Kolmykov O, et al. Microfluidic reactors for the size-controlled synthesis of ZIF-8 crystals in aqueous phase. Mater Des. 2017;122:31–41.
CAS
Google Scholar
Koo W-T, Jang J-S, Kim I-D. Metal–organic Frameworks for Chemiresistive Sensors. Chem. 2019;5:1938–63.
CAS
Google Scholar
Kreno LE, et al. Metal–organic framework materials as chemical sensors. Chem Rev. 2012;112:1105–25.
CAS
PubMed
Google Scholar
Kumar P, Deep A, Kim KH. Metal organic frameworks for sensing applications. TrAC Trends Anal Chem. 2015;73:39–53.
CAS
Google Scholar
Lai Z. Development of ZIF-8 membranes: opportunities and challenges for commercial applications. Curr Opin Chem Eng. 2018;20:78–85.
Google Scholar
Lee YR, et al. ZIF-8: a comparison of synthesis methods. Chem Eng J. 2015;271:276–80.
CAS
Google Scholar
Lewis DW, et al. Zeolitic imidazole frameworks: structural and energetics trends compared with their zeolite analogues. CrystEngComm. 2009;11:2272–6.
CAS
Google Scholar
Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly. Nature. 1999;402:276–9.
CAS
Google Scholar
Li JR, Kuppler RJ, Zhou HC. Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev. 2009;38:1477–504.
CAS
PubMed
Google Scholar
Li H, et al. An integrated nanocatalyst combining enzymatic and metal–organic framework catalysts for cascade degradation of organophosphate nerve agents. Chem Commun. 2018a;54:10754–7.
CAS
Google Scholar
Li G, Wang X, Zhang J. Carbon dots for promoting the growth of ZIF-8 crystals to obtain fluorescent powders and their application for latent fingerprint imaging. CrystEngComm. 2018b;20:5056–60.
CAS
Google Scholar
Lin YS, Lin YF, Nain A, Huang YF, Chang HT. A critical review of copper nanoclusters for monitoring of water quality. Sensors Actuators Rep. 2021;3:100026.
Google Scholar
Liu Y, Kasik A, Linneen N, Liu J, Lin YS. Adsorption and diffusion of carbon dioxide on ZIF-68. Chem Eng Sci. 2014;118:32–40.
CAS
Google Scholar
Liu R, Yu T, Shi Z, Wang Z. The preparation of metal–organic frameworks and their biomedical application. Int J Nanomed. 2016;11:1187–200.
CAS
Google Scholar
Liu N, Hao J, Chen L, Song Y, Wang L. Ratiometric fluorescent detection of Cu2+ based on dual-emission ZIF-8@rhodamine-B nanocomposites. Luminescence. 2019;34:193–9.
CAS
PubMed
Google Scholar
Majewski MB, et al. Enzyme encapsulation in metal–organic frameworks for applications in catalysis. CrystEngComm. 2017;19:4082–91.
CAS
Google Scholar
Malkar RS, Yadav GD. Synthesis of cinnamyl benzoate over novel heteropoly acid encapsulated ZIF-8. Appl Catal A Gen. 2018;560:54–65.
CAS
Google Scholar
Mohammed LJ, Omer KM. Dual functional highly luminescence B, N Co-doped carbon nanodots as nanothermometer and Fe3+/Fe2+ sensor. Sci Rep. 2020;10:3028.
CAS
PubMed
PubMed Central
Google Scholar
Müller-Buschbaum K, Beuerle F, Feldmann C. MOF based luminescence tuning and chemical/physical sensing. Microporous Mesoporous Mater. 2015;216:171–99.
Google Scholar
Ni Y, Li S, Kokot S. Simultaneous voltammetric analysis of tetracycline antibiotics in foods. Food Chem. 2011;124:1157–63.
CAS
Google Scholar
Noh K, Lee J, Kim J. Compositions and structures of zeolitic imidazolate frameworks. Isr J Chem. 2018;58:1075–88.
CAS
Google Scholar
Omer KM, Idrees SA, Hassan AQ, Jamil LA. Amphiphilic fluorescent carbon nanodots as a selective nanoprobe for nitrite and tetracycline both in aqueous and organic solutions. New J Chem. 2020;44:5120–6.
CAS
Google Scholar
Omer KM, Hassan AQ. Chelation-enhanced fluorescence of phosphorus doped carbon nanodots for multi-ion detection. Microchim Acta. 2017;184:2063–2071.
Omer KM, Sartin M. Dual-mode colorimetric and fluorometric probe for ferric ion detection using N-doped carbon dots prepared via hydrothermal synthesis followed by microwave irradiation. Opt Mater (Amst). 2019;94:330–336.
Omer KM, Hama Aziz KH, Mohammed SJ. Improvement of selectivity: via the surface modification of carbon nanodots towards the quantitative detection of mercury ions. New J Chem. 2019;43:12979–12986.
Online VA, Nallagondu CGR, Kumar SD. RSC advances. RSC Adv. 2014;4:17196–205.
Google Scholar
Park KS, et al. ZIFs—first synthesis. Proc Natl Acad Sci. 2006;103:10186–91.
CAS
PubMed
PubMed Central
Google Scholar
Qi M, et al. A simple colorimetric analytical assay using gold nanoparticles for specific detection of tetracycline in environmental water samples. Anal Methods. 2018;10:3402–7.
CAS
Google Scholar
Qu ZG, Wang H, Zhang W. Highly efficient adsorbent design using a Cu-BTC/CuO/carbon fiber paper composite for high CH4/N2 selectivity. RSC Adv. 2017;7:14206–18.
CAS
Google Scholar
Rajamanikandan R, Ilanchelian M. Protein-protected red emittive copper nanoclusters as a fluorometric probe for highly sensitive biosensing of creatinine. Anal Methods. 2018;10:3666–74.
CAS
Google Scholar
Rowsell JLC, Spencer EC, Eckert J, Howard JAK, Yaghi OM. Chemistry: gas adsorption sites in a large-pore metal–organic framework. Science (80- ). 2005;309:1350–4.
CAS
Google Scholar
Said K, Qamhieh N, Awwad F, Ayesh AI. Fabrication and characterization of size-selected Cu nanoclusters using a magnetron sputtering source. Sensors Actuators A Phys. 2018;277:112–6.
CAS
Google Scholar
Sarmah AK, Meyer MT, Boxall ABA. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere. 2006;65:725–59.
CAS
PubMed
Google Scholar
Shah M, McCarthy MC, Sachdeva S, Lee AK, Jeong HK. Current status of metal–organic framework membranes for gas separations: promises and challenges. Ind Eng Chem Res. 2012;51:2179–99.
CAS
Google Scholar
Shahat A, Hassan HMA, Azzazy HME. Optical metal–organic framework sensor for selective discrimination of some toxic metal ions in water. Anal Chim Acta. 2013;793:90–8.
CAS
PubMed
Google Scholar
Shen L, Chen J, Li N, He P, Li Z. Rapid colorimetric sensing of tetracycline antibiotics with in situ growth of gold nanoparticles. Anal Chim Acta. 2014;839:83–90.
CAS
PubMed
Google Scholar
So MC, Wiederrecht GP, Mondloch JE, Hupp JT, Farha OK. Metal–organic framework materials for light-harvesting and energy transfer. Chem Commun. 2015;51:3501–10.
CAS
Google Scholar
Son YR, Kwak M, Lee S, Kim HS. Strategy for encapsulation of CdS quantum dots into zeolitic imidazole frameworks for photocatalytic activity. Nanomaterials. 2020;10:1–9.
Google Scholar
Spisso BF, de Oliveira e Jesus AL, de Araújo Júnior MAG, Monteiro MA. Validation of a high-performance liquid chromatographic method with fluorescence detection for the simultaneous determination of tetracyclines residues in bovine milk. Anal Chim Acta. 2007;581:108–17.
CAS
PubMed
Google Scholar
Sun K, et al. Functionalization of mixed ligand metal–organic frameworks as the transport vehicles for drugs. J Colloid Interface Sci. 2017a;486:128–35.
CAS
PubMed
Google Scholar
Sun X, Gao G, Yan D, Feng C. Synthesis and electrochemical properties of Fe3O4@MOF core-shell microspheres as an anode for lithium ion battery application. Appl Surf Sci. 2017b;405:52–9.
CAS
Google Scholar
Sutrisna PD, Prasetya N, Himma NF, Wenten IG. A mini-review and recent outlooks on the synthesis and applications of zeolite imidazolate framework-8 (ZIF-8) membranes on polymeric substrate. J Chem Technol Biotechnol. 2020;95:2767–74.
CAS
Google Scholar
Taheri M, et al. Stability of ZIF-8 nanopowders in bacterial culture media and its implication for antibacterial properties. Chem Eng J. 2021;413:127511.
CAS
Google Scholar
Tian R, et al. Localization of Au nanoclusters on layered double hydroxides nanosheets: confinement-induced emission enhancement and temperature-responsive luminescence. Adv Funct Mater. 2015;25:5006–15.
CAS
Google Scholar
Troyano J, Carné-Sánchez A, Avci C, Imaz I, Maspoch D. Colloidal metal–organic framework particles: the pioneering case of ZIF-8. Chem Soc Rev. 2019;48:5534–46.
CAS
PubMed
Google Scholar
Wan X, et al. Programmed release of dihydroartemisinin for synergistic cancer therapy using a CaCO3 mineralized metal–organic framework. Angew Chemie Int Ed. 2019;58:14134–9.
CAS
Google Scholar
Wang LF, Peng JD, Liu LM. A reversed-phase high performance liquid chromatography coupled with resonance Rayleigh scattering detection for the determination of four tetracycline antibiotics. Anal Chim Acta. 2008;630:101–6.
CAS
PubMed
Google Scholar
Wang H, Zhu QL, Zou R, Xu Q. Metal–organic frameworks for energy applications. Chem. 2017a;2:52–80.
CAS
Google Scholar
Wang X, et al. Nanocapsules engineered from polyhedral ZIF-8 templates for bone-targeted hydrophobic drug delivery. Biomater Sci. 2017b;5:658–62.
CAS
PubMed
Google Scholar
Wang Z, Chen B, Rogach AL. Synthesis, optical properties and applications of light-emitting copper nanoclusters. Nanoscale Horizons. 2017c;2:135–46.
CAS
PubMed
Google Scholar
Wang Z, Yu G, Xia J, Zhang F, Liu Q. One-step synthesis of a Methylene Blue@ZIF-8-reduced graphene oxide nanocomposite and its application to electrochemical sensing of rutin. Microchim Acta. 2018;185:1–8.
Google Scholar
Wang F, Zheng T, Xiong R, Wang P, Ma J. CDs@ZIF-8 modified thin film polyamide nanocomposite membrane for simultaneous enhancement of chlorine-resistance and disinfection byproducts removal in drinking water. ACS Appl Mater Interfaces. 2019;11:33033–42.
CAS
PubMed
Google Scholar
Wang Y, et al. Facile synthesis of CDs@ZIF-8 nanocomposites as excellent peroxidase mimics for colorimetric detection of H2O2 and glutathione. Sensors Actuators B Chem. 2021;329:129115.
CAS
Google Scholar
Wang C, et al. Dual-emission fluorescence sensor based on biocompatible bovine serum albumin stabilized copper nanoclusters for ratio and visualization detection of hydrogen peroxide. Dye Pigment. 2021a;190: 109312.
CAS
Google Scholar
Wang HB, Tao BB, Mao AL, Xiao ZL, Liu YM. Self-assembled copper nanoclusters structure-dependent fluorescent enhancement for sensitive determination of tetracyclines by the restriction intramolecular motion. Sensors Actuators B Chem. 2021b;348: 130729.
CAS
Google Scholar
Wei X, Wang Y, Huang Y, Fan C. Composite ZIF-8 with CQDs for boosting visible-light-driven photocatalytic removal of NO. J Alloys Compd. 2019;802:467–76.
CAS
Google Scholar
Wei YS, Zhang M, Zou R, Xu Q. Metal–organic framework-based catalysts with single metal sites. Chem Rev. 2020;120:12089–174.
CAS
PubMed
Google Scholar
Wu X, Xiong S, Mao Z, Hu S, Long X. A designed ZnO@ZIF-8 core-shell nanorod film as a gas sensor with excellent selectivity for H2 over CO. Chem A Eur J. 2017;23:7969–75.
CAS
Google Scholar
Xiaoqing L, et al. Fast synthesis of copper nanoclusters through the use of hydrogen peroxide additive and their. New J Chem. 2015a. https://doi.org/10.1039/C5NJ00831J.
Article
Google Scholar
Xiaoqing L, Ruiyi L, Xiaohuan L, Zaijun L. Ultra sensitive and wide-range pH sensor based on the BSA-capped Cu nanoclusters fabricated by fast synthesis through the use of hydrogen peroxide additive. RSC Adv. 2015b;5:48835–41.
Google Scholar
Yaghi OM, Li G, Li H. Yaghi-selective binding and removal of guests in a imcroporous metal–organic framework. Nature. 1995;378:703–6.
CAS
Google Scholar
Yaghi OM, et al. Reticular synthesis and the design of new materials. Nature. 2003;423:705–14.
CAS
PubMed
Google Scholar
Yang X, et al. One-step synthesis and applications of fluorescent Cu nanoclusters stabilized by l-cysteine in aqueous solution. Anal Chim Acta. 2014;847:49–54.
CAS
PubMed
Google Scholar
Zhang CF, et al. A novel magnetic recyclable photocatalyst based on a core-shell metal–organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. J Mater Chem A. 2013;1:14329–34.
CAS
Google Scholar
Zhang Y, et al. Luminescent sensors based on metal–organic frameworks. Coord Chem Rev. 2018;354:28–45.
CAS
Google Scholar
Zhang Y, et al. The synthesis of high bright silver nanoclusters with aggregation-induced emission for detection of tetracycline. Sensors Actuators B Chem. 2021;326:129009.
CAS
Google Scholar
Zhou Y, et al. Detection and removal of antibiotic tetracycline in water with a highly stable luminescent MOF. Sensors Actuators B Chem. 2018;262:137–43.
CAS
Google Scholar