Amala G, Gowtham SM (2017) Recent advancements, key challenges and solutions in nonenzymatic electrochemical glucose sensors based on graphene platforms. RSC Adv.7:36949-36976. https://doi.org/10.1039/C7RA02845H, 7, 59, 36949, 36976
Bai Y, Xu T, Zhang X. Graphene-based biosensors for detection of biomarkers. Micromachines. 2020;11(1):60. https://doi.org/10.3390/mi11010060.
Article
PubMed Central
Google Scholar
Bruen D, Delaney C, Florea L, Diamond D. Glucose sensing for diabetes monitoring: recent developments. Sensors. 2017;17:1866. https://doi.org/10.3390/s17081866.
Article
CAS
PubMed Central
Google Scholar
Chen Q, Zhang L, Chen G. Facile preparation of graphene-copper nanoparticle composite by in situ chemical reduction for electrochemical sensing of carbohydrates. Anal Chem. 2012;84(1):171–8. https://doi.org/10.1021/ac2022772.
Article
CAS
PubMed
Google Scholar
Dhara K, Ramachandran T, Nair BG, SatheeshBabu TG. Single step synthesis of au–CuO nanoparticles decorated reduced graphene oxide for high performance disposable nonenzymatic glucose sensor. J Electroanal Chem. 2015;743:1–9. https://doi.org/10.1016/j.jelechem.2015.02.005.
Article
CAS
Google Scholar
Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, et al. Raman spectrum of graphene and graphene layers. Phys Rev Lett. 2006;97:187401. https://doi.org/10.1103/PhysRevLett.97.187401.
Article
CAS
Google Scholar
Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev. 2016;116(9):5464–519. https://doi.org/10.1021/acs.chemrev.5b00620.
Article
CAS
PubMed
Google Scholar
Gopalan AI, Komathi S, Sai Anand G, Lee KP. Nanodiamond based sponges with entrapped enzyme: a novel electrochemical probe for hydrogen peroxide. Biosens Bioelectron. 2013;46:136–41. https://doi.org/10.1016/j.bios.2013.02.036.
Article
CAS
PubMed
Google Scholar
Gopalan AI, Muthuchamy N, Komathi S, Lee KP. A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor. Biosens Bioelectron. 2016;84:53–63. https://doi.org/10.1016/j.bios.2015.10.079.
Article
CAS
PubMed
Google Scholar
Gopalan AI, Muthuchamy N, Lee KP. A novel bismuth oxychloride-graphene hybrid nanosheets based non-enzymatic photoelectrochemical glucose sensing platform for high performances. Biosens Bioelectron. 2017;89(Pt 1):352–60. https://doi.org/10.1016/j.bios.2016.07.017.
Article
CAS
PubMed
Google Scholar
Haldorai Y, Hwang SK, Gopalan AI, Huh YS, Han YK, Voit W, Sai-Anand G, Lee K. P (2016) Direct electrochemistry of cytochrome c immobilized on titanium nitride/multi-walled carbon nanotube composite for amperometric nitrite biosensor. Biosens Bioelectron 79:543–552. https://doi.org/10.1016/j.bios.2015.12.054
Hota P, Miah M, Bose S, Dinda D, Ghorai KU, Su Y, et al. Ultra-small amorphous MoS2 decorated reduced graphene oxide for supercapacitor application. J Mater Sci Technol. 2020;40:196–203. https://doi.org/10.1016/j.jmst.2019.08.032.
Article
Google Scholar
Hsu YW, Hsu TK, Sun CL, Nien YT, Pu NW, Ger MD. Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications. Electrochimca Acta. 2012;82:152–7. https://doi.org/10.1016/j.electacta.2012.03.094.
Article
CAS
Google Scholar
Hu A, Li R, Bridges D, Zhou W, Bai S, Ma D, et al. Photonic nanomanufacturing of high-performance energy devices on flexible substrates. J Laser Applications. 2016;28(2):022602. https://doi.org/10.2351/1.4944449.
Article
CAS
Google Scholar
Ji L, Praveen M, Victor A, Xingcheng X, Mataz. A graphene-based nanocomposites for energy storage. Adv Energy Mater. 2016;6(16):1502159. https://doi.org/10.1002/aenm.201502159.
Article
CAS
Google Scholar
Khan M, Nagal V, Nakate UT, Khan MR, Khosla A, Ahmad R. Engineered CuO nanofibers with boosted non-enzymatic glucose sensing performance. J Electrochem Soc. 2021;168(6):067507. https://doi.org/10.1149/1945-7111/ac030d.
Article
CAS
Google Scholar
Liu F, Wang C, Sui X, Adi M, Riaz MA, Xu M, et al. Synthesis of graphene materials by electrochemical exfoliation: recent progress and future potential. Carbon Energy. 2019;1:173–99. https://doi.org/10.1002/cey2.14.
Article
Google Scholar
Makaram P, Owens D, Aceros J. Trends in nanomaterial-based non-invasive diabetes sensing technologies. Diagnostics. 2014;4:427–46. https://doi.org/10.3390/diagnostics4020027.
Article
Google Scholar
Mallick A, Mahapatra AS, Mitra A, Greneche J, Ningthoujam R, Chakrabarti P. Magnetic properties and bio-medical applications in hyperthermia of lithium zinc ferrite nanoparticles integrated with reduced graphene oxide. J Appl Phys. 2018;123(5):055103. https://doi.org/10.1063/1.5009823.
Article
CAS
Google Scholar
Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, et al. Improved synthesis of graphene oxide. ACS Nano. 2010;8(8):4806–14. https://doi.org/10.1021/nn1006368.
Article
CAS
Google Scholar
Nakate UT, Choudhary SP, Ahmed R, Patil P, Nakate YT, Hahn YB, et al. Graphene oxide (GO) nanocomposite based room temperature gas sensor. In: Tomer V, editor. Functional nanomaterials. Materials horizons: from nature to nanomaterials, vol. 2020. Singapore: Springer; 2020. p. 303–28. https://doi.org/10.1007/978-981-15-4810-9_12.
Chapter
Google Scholar
Peter K, Heineman WR. Laboratory techniques in electroanalytical chemistry. New York: Marcel Dekker; 1996. p. 60.
Google Scholar
Sai-Anand G, Anantha-Iyengar KS-W, Komathi S, Lee K-P. One pot synthesis of new gold nanoparticles dispersed poly (2-aminophenyl boronic acid) composites for fabricating an affinity based electrochemical detection of glucose. Sci Adv Mater. 2014;6(7):1356–64. https://doi.org/10.1166/sam.2014.1836.
Sai-Anand G, Sivanesan A, Benzigar MR, Singh G, Gopalan AI, Baskar AV, et al. Recent progress on the sensing of pathogenic bacteria using advanced nanostructures. Bull Chem Soc Jpn. 2019;92(1):216–44. https://doi.org/10.1246/bcsj.20180280.
Article
CAS
Google Scholar
Shu H, Chang G, Su J, Cao L, Huang Q, Zhang Y, et al. Single-step electrochemical deposition of high-performance au-graphene nanocomposites for non enzymatic glucose sensing. Sensors and Actuators B: Chemicals. 2015;220:331–9. https://doi.org/10.1016/j.snb.2015.05.094.
Article
CAS
Google Scholar
Song J, Xu L, Zhou C, Xing R, Dai Q, Liu D, et al. Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection. ACS Appl Mater Interfaces. 2013;5:12928–34. https://doi.org/10.1021/am403508f.
Article
CAS
PubMed
Google Scholar
Sridara T, Upan J, Saianand G, Tuantranont A, Karuwan C, Jakmunee J. Non-enzymatic amperometric glucose sensor based on carbon nanodots and copper oxide nanocomposites electrode. Sensors. 2020;20(3):808. https://doi.org/10.3390/s20030808.
Article
CAS
PubMed Central
Google Scholar
Thévenot D, Toth K, Durst R, Wilson G. Electrochemical biosensors: recommended definitions and classification. Anal Lett. 2001;34(5):635–59. https://doi.org/10.1081/AL-100103209.
Article
Google Scholar
Thunkhamrak C, Chuntib P, Ounnunkad K, Banet P, Aubert PH, Saianand G, et al. Highly sensitive voltammetric immunosensor for the detection of prostate specific antigen based on silver nanoprobe assisted graphene oxide modified screen printed carbon electrode. Talanta. 2020;208:120389. https://doi.org/10.1016/j.talanta.2019.120389.
Tong X, Wang H, Wang G, Wan L, Ren Z, Bai J, et al. Controllable synthesis of graphene sheets with different numbers of layers and effect of the number of graphene layers on the specific capacity of anode material in lithium-ion batteries. J Solid-State Chemistry. 2011;184(5):982–9. https://doi.org/10.1016/j.jssc.2011.03.004.
Article
CAS
Google Scholar
Wang AJ, Feng JJ, Li ZH, Liao QC, Wang ZZ, Chen JR. Solvothermal synthesis of cu/Cu2O hollow microspheres for non-enzymatic amperometric glucose sensing. Cryst Eng Comm. 2012;14:1289–95. https://doi.org/10.1039/C1CE05869J.
Article
CAS
Google Scholar
Wang K, Liu Q, Guan QM, Wu J, Li HN, Yan JJ. Enhanced direct electrochemistry of glucose oxidase and bio sensing for glucose via synergy effect of graphene and CdS nanocrystals. Biosens Bioelectron. 2011;26:2252–7. https://doi.org/10.1016/j.bios.2010.09.043.
Article
CAS
PubMed
Google Scholar
Wang X, Liu E, Zhang X. Non-enzymatic glucose biosensor based on copper oxide-reduced graphene oxide nanocomposites synthesized from water-isopropanol solution. Electrochim Acta. 2014;130:253–60. https://doi.org/10.1016/j.electacta.2014.03.030.
Article
CAS
Google Scholar
Wei H, Sun JJ, Guo L, Li X, Chen GN. Highly enhanced electrocatalytic oxidation of glucose and shikimic acid at a disposable electrically heated oxide covered copper electrode. Chem Commun (Camb). 2009;20(20):2842–4. https://doi.org/10.1039/b904673a.
Article
CAS
Google Scholar
Wu HX, Cao WM, Li Y, Liu G, Wen Y, Yang HF, et al. In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochim Acta. 2010;55:3734–40. https://doi.org/10.1007/s00604-012-0923-1.
Article
CAS
Google Scholar
Wu J, Wang P, Wang F, Fang Y. Investigation of the microstructures of graphene quantum dots (GQDs) by surface-enhanced raman spectroscopy. Nanomaterials. 2018;8(10):864. https://doi.org/10.3390/nano8100864.
Article
CAS
PubMed Central
Google Scholar
Xu Z, Liu Q, Zhu X, Li C, Xu M, Liang Y. Reduction of graphene oxide via ascorbic acid and its application for simultaneous detection of dopamine and ascorbic acid. Int J Electrochem Sci. 2012;7:5172–84.
Google Scholar
Yin H, Cui Z, Wang L, Nie Q. In situ reduction of the cu/Cu2O/carbon spheres composite for enzymatic less glucose sensors. Sensors Actuators B: Chemicals. 2016;222:1018–23. https://doi.org/10.1016/j.snb.2015.09.047.
Article
CAS
Google Scholar
Zhang Y, Li N, Xiang Y, Wang D, Zhang P, Wang Y, et al. A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon. 2020;156:506–13. https://doi.org/10.1016/j.carbon.2019.10.006.
Article
CAS
Google Scholar