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Abstract 

This study synthesized a facile and high sensitive fluorescent probe based on sulfur-doped carbon dots (S-CDs) using 
a one-step microwave irradiation method. The probe exhibited a strong blue emission and a high quantum yield (QY) 
of 36.40%.  In the detection, the presence of trivalent chromium (Cr(III)) strongly quenched the PL intensity of S-CDs 
by the inner filter effect (IFE) quenching mechanism of Cr(III) on the S-CDs. The S-CDs exhibited good sensitivity to 
turn-off Cr(III) detection with a linear range concentration of 0–45 μM and a detection limit of 0.17 μM. Furthermore, 
the proposed method has been successfully applied for Cr(III) detection in natural water samples with the 93.68–
106.20% recoveries.
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Introduction
Carbon dots (CDs) are carbon-based nanoparticles that 
have unique photoluminescent properties such as high 
photostability (Zhi et al. 2018), good solubility in water, 
easily modified with specific functional groups for vari-
ous field applications (Karakoti et  al. 2015; Farshbaf 
et al. 2018). In addition, CDs provide superior prospects 
both in cost-effectiveness and environmental friendli-
ness (Pudza et  al. 2020). Currently, carbon dots appli-
cations have tremendous concerns, e.g., metal sensing 
(Chahal et al. 2020; Khan et al. 2017; Zhang et al. 2016), 
tunable photoluminescence (Zheng et  al. 2020), biosen-
sor (Madrakian et  al. 2017; Zhang and Guo 2021), bio-
imaging (Zan et  al. 2018), bio-labeling (Liu et  al. 2019), 
biomedicine (Shaikh et  al. 2018), photocatalytic energy 
conversion (Fernando et al. 2015), and as nanocarriers for 
gene delivery (Zuo et al. 2015). In metal sensing, carbon 
dots can detect metal by quenching or turning it off. This 

causes a decrease in the intensity of PL carbon dots on 
the addition of metal (Khan et al. 2017).

The method for synthesizing carbon dots is generally 
divided into top-down and bottom-up (Zuo et al. 2015). 
Synthesis of carbon dots by breaking down large par-
ticles into nanoparticle-sized particles is called the top-
down method, like oxidation (Misra et al. 2018; Tan et al. 
2019), electrochemical (Ahirwar et  al. 2017), laser abla-
tion (Thongpool et al. 2012; Kang et al. 2020). In contrast, 
the bottom-up method is a method of arranging atoms 
or molecules to form the desired nanometer-sized parti-
cles like hydrothermal (Chahal et al. 2020), solvothermal 
(Zheng et al. 2020), pyrolysis (Li et al. 2020), microwave, 
and sonochemical assisted (Ashritha et  al. 2021). The 
microwave method is a common bottom-up method for 
synthetic CDs due to being simple, fast, cost-efficient, 
and environmentally friendly (Ang et  al. 2020). This 
method works by vibrating the carbon chain to undergo 
rearrangement (Guan et al. 2020).

This work synthesized carbon dots from succinic 
acid and sodium thiosulfate using a one-step micro-
wave  irradiation method. Succinic acid and sodium 
thiosulfates are biocompatible carbon and oxygen-rich 
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building blocks in chemical synthesis (Prathumsuwan 
et al. 2018). Succinic acid comprises mainly the carbox-
ylic functionalize group and can be produced from Act-
inobacillus succinogenes through Broth fermentation 
(Lin et al. 2010). Meanwhile, Sulfur (S) is often used to 
improve the properties of optical carbon dots because 
of the similar electronegativity with carbon but a larger 
atomic radius than a carbon atom. Six valence electrons 
in each S atom can modify the electronic structure of 
CDs. Under certain conditions, zero-length bonds 
can be formed between the CDs and the target bio-
molecules from the disulfide covalent bonds (Karakoti 
et al. 2015). Therefore, the presence of S together with 
carboxylic acid functionality made S-CDs negatively 
charged and bright blue luminescent (Ding et al. 2020). 
The purpose of this study is to identify whether the nat-
urally present functional groups in succinic acid’s pre-
cursor and S will impact the optical properties of CDs 
and their sensing applications for presenting Cr(III) in 
water.

In surface water, the ratio of Cr(III) to hexavalent 
chromium varies widely. Generally, Cr(III) is a positive 
ion that forms hydroxides and complexes. Approxi-
mately 25% of Cr(III) of the available daily intake 
(2–8  g) is absorbed for metabolism, but Cr(III) com-
pounds are cytotoxic. They might cause chromosomal 
damage in enormous amounts (Tumolo et  al. 2020). 
Thus, selective and sensitive determination of chro-
mium is important. Several methods have been used 
to detect Cr(III) in water, such as inductively cou-
pled plasma atomic emission spectrometry (ICP-AES) 
(Liang et al. 2003), flame atomic absorption spectrom-
etry (EAAS) (Sperling et  al. 1992), X-ray fluorescence 
spectrometry (Inui et  al. 2011) and electrochemical 
methods (Prabhakaran et al. 2020). However, several of 
these methods requires expensive costs and a complex 
procedure because the sample must be pre-treated, so 
that it takes a long time and is less efficient if applied. 
In addition, the method of using a colorimetric method 
based on nanoparticles has also been developed for a 
long time. One example is the synthesis of gold nano-
particles functionalized with mercaptobenzoic acid 
(Zhang et al. 2020). However, this nanoparticle is a bit 
tough to synthesize, so that a better method is needed.

Therefore, the synthesis of S-CDs from succinic acid 
as a precursor and sodium thiosulfate as an S source is 
an excellent alternative method for detecting Cr(III). 
Cr(III) is considered as a quencher for the mechanism 
of S-CDs fluorescence via IFE. In IFE, the quencher 
absorption spectrum overlaps with the CDs’ excitation 
and/or emission (Lee et al. 2020; Tan et al. 2020; Pani-
grahi and Mishra 2019).

Methods
Materials
All chemicals were of analytical grade. Succinic acid 
(C4H6O4), quinine hemisulfate salt monohydrate 
(C40H52N4O9S), lead(II) nitrate (Pb(NO3)2), rubid-
ium chloride (RbCl), and cesium chloride (CsCl) were 
obtained from Sigma-Aldrich (USA). Chromium(III) 
nitrate nonahydrate (Cr(NO3)3·9H2O) was purchased 
from Alfa Aesar (USA). Nickel(II) nitrate hexahydrate 
(Ni(NO3)2·6H2O) and magnesium nitrate hexahydrate 
(Mg(NO3)2·6H2O) were procured from Showa (Japan). 
Sodium thiosulfate pentahydrate (Na2S2O3·5H2O) was 
purchased from Shimakyu’s pure chemicals (Japan) and 
copper(II) sulfate pentahydrate (CuSO4·5H2O) was pur-
chased from Choneye pure chemicals. Sodium hydrox-
ide (NaOH) was purchased from Honeywell Fluka 
(Germany). Iron(II) chloride tetrahydrate (FeCl2·4H2O) 
and other metals were purchased from Merck (USA). 
Ultrapure water was obtained from a Milli-Q Reference 
purification system (18.2 MΏ cm, 25 °C).

Synthesis of the S‑CDs
The S-CDs were synthesized by microwave irradiation 
method according to previous reported method with 
small modification (Nemati et al. 2018a). Typically, suc-
cinic acid (0.5  g) and sodium thiosulfate (0.35  g) were 
dissolved with deionized water (15  mL) in crucible 
porcelain 50 mL. A domestic microwave irradiated the 
mixture solution at 700  W for 5.5  min. After irradia-
tion, the resulting solid was dissolved in 10 mL for fur-
ther centrifugation at 10,000 rpm for 30 min. This step 
is purposed to remove the insoluble material of S-CDs. 
The obtained supernatant was filtered by a micropore 
membrane filter (0.22 µm). Thus, the solution contain-
ing S-CDs was kept for further analysis. The synthesis 
of S-CDs and their application as turn-off sensor for 
Cr(III) is depicted in Fig. 1.

Characterization of S‑CDs
S-CDs morphology was performed by transmission 
electron microscopy (TEM) on a JEOL JEM-2010 with 
an accelerating voltage of 200 kV. The surface of S-CDs 
was characterized by attenuated total reflectance-
Fourier transform infrared (ATR-FTIR) spectrometer 
(Perkin Elmer, USA). PHI Hybrid Quantera conducted 
X-ray photoelectron spectroscopy (XPS) measurement. 
Characterization of the nature of the material was con-
ducted by x-ray diffraction (XRD). The PL spectra were 
observed by FP-750 Spectrofluorometer (Jasco, Japan). 
All measurements were performed in 10  mm quartz 
microcells, at room temperature. Ultraviolet–visible 
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(UV–Vis) absorption spectra were obtained with Spec-
trophotometer Lambda 265 (Perkin Elmer, USA).

Measurement of quantum yield
The QY of synthesized S-CDs was measured by plotting 
the absorbance versus PL intensity of both S-CDs and 
quinine sulfate in 0.1 M H2SO4 (QY = 0.54) as reference. 
The excitation wavelength was conducted at 320 nm and 
the QY calculation refers to the QY equation (Xu et  al. 
2020) based on Eq. (1):

subscripts “s” and “r” stand for sulfur-doped carbon dots 
and reference quinine sulfate, respectively. “I” corre-
sponds to the integrated PL intensity, “A” corresponds to 
the absorbance measured at the excited wavelength and 
“η” refers to the solvent refractive index.

Sensitivity and selectivity of Cr(III)
To evaluate the range detection of S-CDs towards Cr(III), 
the series of Cr(III) concentration were mixed with 10 µL 
S-CDs solution (0.02  mg/mL), respectively. Then, the 
mixture solution was diluted to 3  mL with deionized 
water. The solution was mixed thoroughly and kept at 
room temperature for 5 min. Afterward, the PL intensity 
was measured at excitation wavelength 320 nm and emis-
sion wavelength 407  nm. To describe the PL quenching 
profile of S-CDs with Cr(III) presence, the plot of I0/I 
versus C was performed according to the Stern–Volmer 
equation (Ghanem et al. 2020) based on Eq. (2):

(1)QYs = QYr

IsArη
2
s

IrAsη2r

(2)
I0

I
= 1+ KSV[C]

where I0 refers to the initial PL intensity, I represents the 
PL intensity with the presence of Cr(III), KSV denotes the 
Stern–Volmer quenching constant, and C refers to the 
added concentration of metal ions.

To assess selectivity, different kinds of metal ions, e.g. 
Cr(III), Cs(I), K(I), Li(I), Mn(II), Na(I), Rb(I), Hg(II), 
Se(IV), Ni(II), Pb(II) and Fe(III) were tested with the 
S-CDs. 10  μL S-CDs (0.02  mg/mL) and 60  μL of metal 
ion (0.01  M) was transferred to vial, respectively. Then, 
the mixture solution was diluted to 3 mL with deionized 
water. The solution was mixed thoroughly and left to 
react at room temperature for 5 min, and then recorded 
the associated PL intensity. To validate the feasibility of 
S-CDs under environmental conditions, the S-CDs were 
applied in Taichung city in two different water samples 
(river water and tap water). A 0.22 µm syringe filter fil-
tered the water sample to reduce the insoluble materials 
and each sample (1  mL) was spiked with a known con-
centration of Cr(III) and S-CDs 10 µL (0.02 mg/mL).

Result and discussions
Optimization of S‑CDs synthesis
The synthesis of S-CDs was conducted by a microwave 
irradiation method using succinic acid as precursor and 
sodium thiosulfate as sulfur sources. The S-CDs synthe-
sized has good solubility in water. A factorial design using 
three factors and two levels has been done to produce the 
S-CDs with the highest quantum yield and good optical 
properties. These factors are microwave power, time irra-
diation, and the amount of sodium thiosulfate, while suc-
cinic acid was 0.22  g for each experiment. The QY was 
determined by a plot of integrated PL intensity versus 
the absorbance of S-CDs and quinine sulfate (Additional 
file  2: Fig. S1). Quinine sulfate was used as fluorescent 

Fig. 1  S-CDs synthesis process for Cr(III) detection
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standard due to similar PL excitation and emission wave-
length with the S-CDs synthesized. Thus, the highest QY 
for S-CDs was obtained 36.40% at the microwave power 
700  W, the time irradiation 5.5  min and the amount of 
sodium thiosulfate 0.35  g (Additional file  1: Table  S1). 
The microwave irradiation method provides an effective, 
efficient, and convenient method for synthesizing S-CDs. 
The microwave method could increase the particle size 
uniformity of carbon dots (Lin et al. 2019). Particle size 
could be attributed to the change rate of non-radia-
tive radiation and relaxation mechanisms. Wherein an 
increase in particle size causes a decrease in quantum 
efficiency (Dijken et  al. 2001). In addition, adding S as 
surface passivation can increase the QY due to its cata-
lytic ability on the surface of S-CDs (Lin et al. 2019).

S‑CDs characterization
TEM image of synthesized S-CDs is displayed in 
Fig. 2a. The result showed that S-CDs were spherical in 
shape and distributed within the range of 1.5–5.0  nm 
(Fig.  2b). The XRD spectra indicated the degree of 
crystallinity of the S-CDs synthesized showed sharp 
peaks around 25.47°–28.06°. These peaks correspond 

to graphite’s (002) plan (Nemati et  al. 2018a; Wang 
et  al. 2019; Pakhira et  al. 2016). The other sharp peak 
appeared at 13.93° and broad peaks appeared at 18.12° 
and 23.56°, which indicated highly disorder carbon 
atoms and confirmed the amorphous nature of carbon 
dots (Du et  al. 2014; Bian et  al. 2018). Thus, the syn-
thesized S-CDs contained a structure of carbon, both 
crystalline and amorphous phases.

The FTIR spectra (Fig. 2c) presented the surface func-
tionalities of S-CDs corresponding to succinic acid. 
Both the S-CDs and succinic acid were similar func-
tional peaks, except the absorption peak at 665  cm−1 in 
the S-CDs demonstrated C–S/C–S–C bending (Ouyang 
et al. 2019; Nemati et al. 2018a; Gupta and Nandi 2017). 
In addition, the peaks at 1122  cm−1 and 1051  cm−1 
could be described as C–S and present of SO3, respec-
tively (Sun et al. 2016; Ding et al. 2014). Meanwhile, the 
peaks at 3430  cm−1 and 2933  cm−1 attributed to the 
broad absorption of O–H and C–H stretching vibra-
tion, respectively (Başoğlu et  al. 2020; Lin et  al. 2019). 
The peak of C=O representing carboxylic acid, and the 
C–O stretching vibration was indicated at 1692  cm−1 at 
1309 cm−1 (Chandra et al. 2013). The peak at 1411 cm−1 

Fig. 2  a TEM image of S-CDs. b diameter distribution of particle. c FTIR spectrum of the S-CDs. d XPS spectrum of S-CDs
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demonstrated C–O–H in-plane blending (Mitra et  al. 
2013). The FTIR spectra indicated that succinic pre-
cursors doped with S could be successfully prepared by 
microwave method.

The three peaks in the XPS spectrum character-
ized by C1s, O1s, and S2p, respectively, indicate that 
C, O, and S contained atomic percentage ratio of 
C:O:S = 62.3:36.2:1.5 in the S-CDs synthesis (Fig.  2d). 
The high-resolution of XPS spectra showed the C1s spec-
trum at 284.5 assigned to C–C/C=C and the subsequent 
peaks at 285.5, 286.3, and 288.3  eV (Additional file  3: 
Fig. S2a) assigned to C–OH (hydroxyl), C–S, and C=O 
(carboxyl), respectively (Nemati et  al. 2018b; Chandra 
et al. 2013). The two peaks at 532.1 and 535.6 eV in the 
O1s spectrum assigned C = O/COOH groups and OH 
(Additional file  3: Fig S2b). According to Fig. S2c, there 
were two main peaks of the S2p spectrum centered at 
163.7 and 168.8 eV. The first centered peaks at 163.2 and 
164.3 eV could be associated with 2p3/2 and 2p1/2 of the 
–C–S– covalent bond due to their spin–orbit couplings 
(Ding et  al. 2014; Nemati et  al. 2018b). The next peak 
could be deconvoluted into three peaks at 167.6, 168.5, 
and 169.3 eV, refer to the –C–SOx– (x = 2, 3, 4) species 
(Ding et al. 2014; Gupta and Nandi 2017). Therefore, The 
FTIR and XPS approved the presence of C–C/C = C, 
C = O, –OH, –COOH, C–S, and C-SOx surface func-
tional group in the S-CDs synthesis.

Optical properties
The optical properties of S-CDs were conducted by UV–
Vis and fluorescence techniques. As shown in Fig.  3a, 

there were two unique absorption peaks of the S-CDs 
spectrum. The peak at 255  nm corresponded to π–π* 
transition of C=C, and the peak 320  nm corresponded 
to n → π* transition of C=O (Ouyang et al. 2019; Nemati 
et al. 2018c; Başoğlu et al. 2020). Under a 365 UV lamp, 
the S-CDs solution emitted a blue color (Fig.  3a inset). 
Figure  3b shows the photoluminescence (PL) emission 
spectra of S-CDs dependent on the excitation wave-
length. There were two regions of fluorescence emitted 
according to fluorescence excitation. When the fluores-
cence excited from 300 to 340, the fluorescence emission 
displayed a red shift from 405 to 414 nm. Meanwhile, the 
fluorescence emission demonstrated a red shift from 446 
to 504 nm when the fluorescence excitation was 350–480. 
Then, the fluorescence emission-dependent excitation 
wavelength resulted in the highest emission at 407  nm 
upon excitation by 320, giving rise to a blue emission. 
This color is due to the S doping of the CDs (Ding et al. 
2014). Otherwise, the lowest emission at 504  nm upon 
excitation by wavelength 480  nm. Furthermore, there 
is no fluorescence emitted at fluorescence excited more 
than 480 nm.

The changing of emission wavelengths at different 
excitation wavelengths was related to functional groups 
on the surface, and the various sizes of S-CD parti-
cles (Lin et al. 2019; Jayaweera et al. 2019). The S is the 
one that has a strong electron affinity, which causes the 
increase in electron density in the intrinsic state of the 
S-CDs (Kang et  al. 2020). The surface functional group 
of the S-CDs will act as an emission trap. The electronic 
structure of the carbon dots might be modulated by S 

Fig. 3  a UV–Vis absorption corresponding to emission at 407 nm and excitation at 320 nm (inset: photographs of S-CDs under UV light and 
daylight). b PL emission spectra of S-CDs dependent excitation wavelengths
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through inputting the S energy levels between π and π* 
of carbon to produce multi-emission peaks (Feng et  al. 
2018). In addition, different functional groups provide 
different energy levels. It was possible due to the abil-
ity of each functional group to supply electrons to the 
CDs. On the other hand, the change in S-CD particle size 
resulted in a localized state associated with discrete sp2 
at the Lowest Unoccupied Molecular Orbital (LUMO) 
and Highest Occupied Molecular Orbital (HOMO) lev-
els (Ouyang et al. 2019; Kang et al. 2020). When the par-
ticles get smaller, there was a larger energy gap between 
the 2 levels, which caused the electrons in the HOMO to 
need more a lot of energy to get excited into the LUMO. 
The electronic transitions in these localized states were 
responsible for the redshift of the fluorescence emission 
wavelength (Ouyang et al. 2019; Feng et al. 2018).

Photostability of the S‑CDs
Four critical factors were observed to evaluate the stabil-
ity of the S-CDs. These were: the effect of various ionic 
strength concentrations, different temperatures, differ-
ent time exposure to ultraviolet light (under UV light 
365 nm), and the effect of various pH. The effect of ionic 
strength on PL intensity was studied with a range con-
centration of NaCl solution from 0 to 200  mM. The PL 
intensity was stable even at high NaCl concentration 
(Additional file  4: Fig. S3a), which indicated the high 
colloid stability possessed by S-CDs against the attrac-
tive forces of the particles (Jayaweera et al. 2019; Nemati 
et al. 2018c). This showed that the PL intensity was inde-
pendent of ionic strength. Under environmental condi-
tions, the PL intensity remained unchanged because the 
primary mechanism was not disturbed by the presence 
of ions. In contrast, increasing temperatures resulted in 
a decrease in PL intensity (Additional file  4: Fig. S3b). 
Increased temperature indicates diminishing fluores-
cence caused by non-radiant heat, leading to reduced 
radiation emissions.

To ensure photostability of S-CDs was conducted 
by continuous UV irradiation using UV light 365  nm 
for 120  min. Additional file  4: Fig. S3c demonstrated 
a decrease in PL intensity after 60  min and 120  min of 
exposure by 14% and 21%, respectively. In traditional 
fluorescent dyes such as Rhodamine 6G, the reduction 
in PL intensity after 120 min of continuous exposure was 
almost 54% (Madjene et  al. 2021). This shows that the 
S-CDs were more resistant to photobleaching. Further-
more, to determine the effect of pH on PL intensity, it 
was carried out in the pH value from 1 to 12. The most 
vigorous PL intensity occurred at pH 3 (Additional file 4: 
Fig. S3d). An increase in pH value resulted in a decrease 
in PL intensity, but an increase in PL intensity returned 
to pH 6. A similar pattern occurred in the pH between 

6 and 10. The pH-dependent PL intensity was related to 
the protonation/deprotonation of the carboxyl (–COOH) 
and hydroxyl groups (–OH) on the S-CD surface (Huang 
et  al. 2015). Therefore, the unique PL intensity charac-
teristics as a function of pH provided a good direction 
for determining metal ions, especially in acidic environ-
ments (Issa et al. 2020).

Sensitivity and selectivity of S‑CDs towards Cr(III)
The fluorescence quenching refers to Stern–Volmer, 
which is expressed by Eq. 2. While the limit of detection 
was calculated using 3δ/m, where the standard deviation 
of the blank signal was denoted by δ and m refers to the 
slope of the linear correlation. As shown in Fig.  4a, the 
S-CDs’ PL intensity demonstrated a significant decrease 
with the increasing concentration of Cr(III) from 0 to 
200  µM compared to the other metal ions. A good lin-
ear correlation (R2, 0.995) was showed between quench-
ing efficiency I0/I and concentration Cr(III) in a range of 
0–45 µM (Fig. 4b), and the limit of detection (LOD) was 
calculated to be 0.17 µM.

Several metal ions were prepared to evaluate the selec-
tivity of S-CDs towards Cr(III). These ions included 
Cr(III), Na(I), Li(I), Cs(I), K(I), Mn(II), Rb(I), Hg(II), 
Se(IV), Ni(II), Pb(II) and Fe(III) with a concentration 
of 200 µM for each ion and they were tested with 10 µl 
S-CDs solution (0.02  mg/mL). Figure  5 shows the PL 
intensity was quenched by the presence of Cr(III), about 
95% of the initial PL intensity of S-CDs. These results 
confirmed that the S-CDs have high selectivity towards 
Cr(III) compared to other metals.

Table  1 shows the comparison between the feasibility 
of Cr(III) detection in this study and other related results, 
including linear detection range and LOD.

Possible mechanism of Cr(III) detection
To evaluate the quenching mechanism by Cr(III), the 
absorbance spectra of the presence of Cr(III) with S-CDs 
were matched with PL excitation spectra and PL emis-
sion spectra from S-CDs (Fig.  6a). There was a good 
spectral overlap in the excitation and emission of S-CDs 
with the absorption spectrum of Cr(III). This phenome-
non could occur through the IFE process due to the over-
lap of the quencher absorption spectrum with excitation 
called the primary inner-filter effect and/or the emis-
sion of CDs called the secondary inner-filter effect (Lee 
et al. 2020; Tan et al. 2020; Panigrahi and Mishra 2019). 
Thus, IFE involved primary and secondary quenching 
mechanisms on the S-CDs surface in the presence of 
Cr(III). IFE was considered the quenching fluorescence 
mechanism rather than the fluorescence resonant energy 
transfer process due to the excellent overlap between 
the quencher absorption spectrum and CDs’ excitation 
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and emission spectra (Zhao et al. 2018; Al-Hashimi et al. 
2020). The PL intensity of S-CDs was reduced by add-
ing Cr(III) to the S-CDs solution. In this phenomenon, 
Cr(III) would absorb the emission light of S-CDs, but the 
excitation light would be constant since the addition of 
Cr(III) into the S-CDs solution. Therefore, the emission 
PL intensity of S-CDSs would be a turn-off (Shahbazi 
and Zare-Dorabei 2019; Mousavi et  al. 2020). Figure  6b 
shows no difference in absorption spectrum S-CDs both 
in absence Cr(III) and presence Cr(III). This confirmed 
the impossibility of forming the ground-state complex 
between S-CDs and Cr(III).

Based on energy perspective, the band gaps values 
between S-CDs and S-CDs with Cr(III) were calculated 

Fig. 4  a Changes in PL emission spectra of S-CDs with different concentrations of Cr(III) and b The Stern–Volmer curve, insert: linear curve in the 
Cr(III) concentration range of 0–45 µM

Fig. 5  The quenching of S-CDs when added different metal ions

Table 1  Comparison of different sensing methods for detection of Cr(III)

Detection probe Linear range (μM) LOD (μM) Refs.

AuNPs modified 4-mercaptobenzoic acid 20–25 5 Zhang et al. (2020)

Au NPs unmodified 0.1–1 0.1 Elavarasi et al. (2014)

Rhodamine modified polyamidoamine dendrimer 10–100 10 Lei et al. (2011)

Au NPs functionalized triazole 5–65 1.4 Chen et al. (2013)

Benzimidazole-based imine-linked 79.4–340 79.4 Saluja et al. (2012)

y-CDs 0–200 24.58 Chang et al. (2016)

DDCDs 0.1–6 0.027 Lu et al. (2019)

Cu-CDs 5–150 0.12 Li et al. (2021)

OCDs 1–96 0.38 Si et al. (2021)

S-CDs 0–45 0.17 This work
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using the Tauc plot equation (Aziz et al. 2019) as formu-
lated in Eq. 3:

where hʋ is the photon energy, α is coefficient of absorp-
tion, Eg is the band gap, ƴ is the index for the responsi-
ble electronic transition (αhʋ)2 indicated a direct allowed 
electron transition of ½), and k is the parameter depend-
ent on the inter-band transition. As shown by Additional 
file  5: Fig. S4a and S4b, Cr(III) in S-CDs indicated a 
reduction in band gap energy. S-CDs’ absorption causes 
the absorption edge to shift in the direction of low pho-
ton energy (Aziz et al. 2019). In addition, the lower band 
gap was related to the charge of metal ions on the surface 
of CDs (Murugan et al. 2019).

(3)(αhυ) = k(hυ − Eg)
γ

Application of S‑CDs on water samples for Cr(III) detection
Experiments in two water sources were carried out to 
investigate the visibility of S-CDs for Cr (III) detection. 
Three known concentrations of Cr(III) were respectively 
introduced to the water sample. The results showed an 
increase in the concentration of Cr(III) quenched on the 
PL intensity of each water sample. As shown in Table 2, 
the percentage of water sample recovery is in the range 
of 93.68–106.20, while the relative standard deviation 
(RSD) ranges from 0.20 to 0.74. These results support 
that S-CDs have the feasibility of being applied as a sen-
sor to detect Cr(III) in water in actual environmental 
conditions.

Conclusion
In summary, we have developed the water-soluble S-CDs 
fluorescent sensor to detect Cr(III) in water samples. A 
microwave  irradiation method was adopted to prepare 
S-CDs using succinic acid as a precursor, and sodium thi-
osulfate as a source of S. The PL intensity of S-CDs was 
effectively quenched by the presence of Cr(III) due to the 
IFE of Cr(III) on S-CDs. Therefore, the proposed method 
was successfully used to detect Cr(III) in actual water 
samples, which can be considered for analyzing Cr(III) in 
other samples. Our present work provides the advantage 
of simplicity, saving time, low cost, and selectivity.

Fig. 6  a UV–Vis absorption spectra of S-CDs with the presence of Cr(III) versus excitation and emission spectra of S-CDs. b UV–Vis absorption 
spectra for Cr(III), S-CDs, and S-CDs with Cr(III)

Table 2  Cr(III) detection in water samples (n = 3)

Sample Spiked 
concentration 
(μmol/L)

Measured 
concentration 
(μmol/L)

Recovery (%) RSD (%)

Tap water 5.00 5.76 104.45 0.21

10.00 9.96 94.74 0.52

15.00 14.72 94.86 0.45

River water 5.00 5.59 106.20 0.20

10.00 9.62 93.68 0.74

15.00 15.05 98.65 0.32
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