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A facile synthesis of GO/CuO-blended
nanofiber sensor electrode for efficient
enzyme-free amperometric determination
of glucose
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Abstract

The development of biosensors with innovative nanomaterials is crucial to enhance the sensing performance of as-
prepared biosensors. In the present research work, we prepared copper (II) oxide (CuO) and graphene oxide (GO)
composite nanofibers using the hydrothermal synthesis route. The structural and morphological properties of as-
prepared GO/CuO nanofibers were analyzed using an X-ray diffractometer, field-emission scanning, energy
dispersive X-ray analysis, Fourier transmission infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron
spectroscopy. The results indicated GO/CuO nanofibers exhibit nanosized diameters and lengths in the order of
micrometers. These GO/CuO nanofibers were employed to prepare non-enzymatic biosensors (GO/CuO nanofibers/
FTO (fluorine-doped tin oxide)) modified electrodes for enhanced glucose detection. The sensing performance of
the biosensors was evaluated using linear sweep voltammetry (LSV) and chronoamperometry in phosphate buffer
solution (PBS). GO/CuO/FTO biosensor achieved high sensitivity of 1274.8 μA mM−1cm−2 having a linear detection
range from 0.1 to 10 mM with the lower detection limit (0.13 μM). Further, the prepared biosensor showed good
reproducibility repeatability, excellent selectivity, and long-time stability. Moreover, the technique used for the
preparation of the GO/CuO composite is simple, rapid, cost-effective, and eco-friendly. These electrodes are
employed for the detection of glucose in blood serum with RSD ~ 1.58%.
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Introduction
Diabetes is a widespread disease affecting millions of
populations and predicted to be the major cause of
death as it can damage neural systems in humans. It is
essential for diabetic patients to frequently monitor and
maintain glucose levels. Hence, an effective diagnosis of
diabetes and a reliable glucose monitoring system are
necessary. Extensive majors have been taken to control
diabetes through several monitoring systems. Glucose
biosensors have a great contribution in monitoring

glucose levels of diabetic patients (Makaram et al., 2014;
Bruen et al., 2017; Gopalan et al. 2017; Gopalan et al.
2016; Sai-Anand et al. 2014). Enzymatic electrochemical
sensors suggest good selectivity and sensitivity but due
to complex mobility, lack of stability and reproducibility
limit their performance (Gopalan et al. 2013, Haldorai
et al. 2016). These limitations are overcome by the de-
velopment of enzyme-free glucose sensor devices
through direct oxidization of glucose in the form oxi-
dized layer (Sai-Anand et al. 2019). Glucose oxidase is
usually practiced as an enzyme in most of the glucose
biosensors. Amperometry is another widely used tech-
nique for glucose detection (Peter and Heineman, 1996,
Thévenot et al., 2001). Glucose oxidase performs a major
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role in the oxidation of β-D-glucose to D-glucono-δ-lac-
tone. Hydrogen peroxide (H2O2) is formed as a bypro-
duct in a catalytic reaction and oxygen as an electron
acceptor. A simple technique, less analysis time, cost ef-
fective, and low detection capability are some advantages
of using amperometry (Thunkhamrak et al., 2020). Re-
gardless of excellent sensitivity and low detection limit
in few nanocomposites, an enzymatic glucose sensor
limits the application of sensors due to high production
cost (G. Gnana kumar et al., 2017). Nowadays, graphene
has attracted researchers due to the larger specific super-
ficial area, purity, high conductivity, and low cost (Liu
et al., 2019). It has diversified applications in various
areas such as batteries (Ji et al., 2016), biomedical (Mal-
lick et al., 2018), supercapacitors (Hota et al. 2020),
printable graphene electronics (Hu Etal. 2016) gas sen-
sors (Nakate et al. 2020), and biosensors (Bai et al.
2020). In chemical synthesis, graphene oxide (GO) is re-
duced to eliminate oxygen-containing functionalities
using hazardous chemicals like hydrazine as a reducing
agent. The process of chemical reduction contains cru-
cial and lengthy steps of chemical reactions, tiresome
washing cycles, and drying of residue. Moreover, the use
of poisonous and explosive reducing agents in the redox
process makes it non-eco-friendly. Hence, functionalized
GO using eco-friendly reduction methods is necessary in
biosensing applications. Copper oxide (CuO) can be
used to functionalize GO as a catalyst because of its
electrochemical catalytic property (Khan et al. 2021). In
an electrolysis process, Cu (II) oxidizes Cu (III) by gain-
ing electrons in the redox reaction. During the oxidiza-
tion process, glucose gets converted into gluconolactone
(Zhang et al. 2020; Wang et al. 2014). Hence, an efficient
electron transfer in glucose oxidation can be predicted
through excellent support of GO to CuO. In the present
work, an enzyme-less amperometric glucose biosensor
using graphene oxide (GO) and copper oxide (CuO)
nanocomposites was successfully prepared using a
fluorine-doped tin oxide (FTO) substrate. The prepared
sensor electrode exhibits exclusive properties such as
large superficial area, good catalytic activity, and excel-
lent electrical conductivity. Moreover, the electrode pro-
vides improved sensitivity, low detection limit, and
excellent recovery in human serum compared to previ-
ously reported literature. Furthermore, the preparation
and detection procedures are simple, fast, less time con-
suming, and cost effective.

Methodology
Natural graphite powder (S.Aldrich, 99.99%), potassium
permanganate (KMnO4, 99%), hydrogen peroxide (H2O2,
30%), sulfuric acid (H2SO4, 99.99%), hydrochloric acid
(HCl, 30%), phosphoric acid (H3PO4,85%), copper oxide
(CuO, 99.9%), polyvinyl alcohol (PVA,99%), fluorine-

doped tin oxide (FTO) substrates, D (+) glucose, dopa-
mine, L-ascorbic acid, D (−) fructose, lactose were pur-
chased from Qualigens Fine Chemicals, India. Deionized
(DI) water was purchased from Sharad Agencies, India.
The phosphate buffer solution (PBS) was prepared in the
laboratory using the standard method. All the chemicals
are of analytical research (AR) grade and used without
further purification.

Synthesis of graphene oxide
Graphene oxide was synthesized using an earlier re-
ported method (Marcano et al., 2010). Graphite powder
and NaNO3 in 2:1 proportion were mixed with concen-
trated H2SO4 and H3PO4 in the ratio of 9:1 (wt %). Fif-
teen grams of KMnO4 was slowly added while stirring
followed by the addition of the required amount of
H2O2. If the mixture turns into bright yellow color, this
represents a great oxidation level of GO. In order to
eradicate SO4

2− ions, the solution was repeatedly washed
and the brownish black precipitate was collected.

Synthesis of GO/CuO nanocomposites
Initially, 0.5 g GO and 0.2 g CuO were dissolved in DI
and the solution was constantly stirred for half an hour
by raising its temperature to 100 °C. Fifty milliliters of
NaOH solution was slowly added to it. The temperature
of the solution was retained for 10 min and allowed to
cool. The GO/CuO composite was collected after
evaporation.

Preparation of GO/CuO nanocomposite electrode
Ten milligrams of the GO/CuO nanocomposite was dis-
persed in 5 ml of DI water and 5 μl of PVA using bath
sonication for half an hour. Then, 10 μl of the suspen-
sion was drop casted on the previously cleaned FTO
substrate. The working area of the electrode was 1 cm2.
The electrode was annealed at 250 °C.

Mechanism of GO/CuO/FTO glucose sensing
A new decorum for the synthesis of the GO/CuO nano-
composite by in situ hydrothermal reduction of GO and
CuO nanobelt formation is developed as shown in Fig. 1.
With the existence of NaOH, DI water assists in the
growth of Cu (OH)2 nanograin morphology on the GO
surface. The epitaxial growth process caused the forma-
tion of CuO nanobelts. The augmented temperature of
the above reaction mixture leads to the formation of a
fiber-like GO/CuO nanostructure. A glucose sensing
performance of the GO/CuO/FTO-modified electrode
was studied in the presence of phosphate buffer solution
(PBS:7.4 pH).
Normally, when glucose disperses in PBS, it creates D-

gluconolactone and hydrogen peroxide (H2O2). It further
generates D-gluconate with H+ ions due to
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electrooxidation of glucose at grain boundaries of CuO.
Hence, gluconolactone is the key product accountable
for oxidation that hydrolyzes gluconic acid. H+ ions
lessen the pre-absorbed oxygen by discharging electrons
which decrease the barrier potential between successive
grains and lifts the electrical conductivity (Wu et al.,
2010).

CuOþH2O→Cu OHð Þ−4 þ e−

Cu3þ þ glucoseþ e−→gluconolactone þ Cu2þ

gluconolactone →
hydrolysis

gluconic acid

Structural and optical characterization
For structural characterization, an XRD analysis for the
synthesized GO and GO/CuO powder was done with
Bruker D8-Advanced Diffractometer using Cu Kα radi-
ation (λ = 0.154 nm) from the range of 5 to 85° with a
scanning rate of 2°/min. Surface morphology and elem-
ental composition of GO and GO/CuO samples were
characterized FESEM: FEI Nova NanoSEM 450, Raman
analysis was done using a micro-Raman spectrometer
(Jobin-Yuon HR 800 UV) using a He–Ne (633 nm) laser
excitation source. XPS analysis of GO and CuO was car-
ried out by Multifunctional XPS (PHI ulvac probe III
Scanning Microprobe). For the FTIR study, FTIR-6100
spectrometer (JASCO) in the transmission (T) mode in
the wavenumber range 4000–400 cm−1 was taken.

Electrochemical measurement
Wonatech potentiostat was used for voltametric and am-
perometric measurements for glucose detection with a
three-electrode system which comprises GO/CuO/FTO
as a working electrode along with platinum as counter

and Ag/AgCl as reference electrode. The electrocatalytic
performance of the electrode was studied using linear
sweep voltammetry (LSV) and chronoamperometry.

Results and discussion
XRD analysis
XRD pattern of GO and GO/CuO nanocomposite is pre-
sented in Fig. 2.
The reflection peak which occurred at (002) at 11.92°

shows the occurrence of oxygen functionalities on the
GO surface with an interlayer basal space of 0.79 nm
(Tong et al. 2011). The peak (100) at 42.56° suggested
the static disorder of GO. In the case of the GO/CuO
nanocomposite, the reflection peak (002) at 24.04°
showed a shift with basal spacing of 0.37 nm. The fall in
basal space suggested that GO was converted to rGO
(Dhara et al. 2015). All peaks of CuO are in good

Fig. 1 Glucose sensing mechanism of GO/CuO/FTO electrode

Fig. 2 XRD pattern of a GO and b GO/CuO
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agreement with the JCPDS file: 48-1548, which confirms
a high degree of purity and crystallinity of CuO.

FESEM and EDS analysis
The surface morphology of prepared GO and GO/CuO
nanocomposites was characterized by FESEM as shown
in Fig. 3.
Graphene oxide showed a thin wrinkled paper-like

structure. In the GO/CuO nanocomposite, high-density

nanofibers of sizes in the range of 70–200 nm and sev-
eral nanometers in length were distributed on the gra-
phene layer. The formation of GO/CuO can be
explained as follows.
Due to the increase in temperature during the synthe-

sis, quick evaporation of water molecules caused a con-
traction of CuO nanoparticles and GO sheets. GO was
thermally reduced to modified graphene. The graphene
2D material has a strong hydrophobic center and

Fig. 3 FESEM of GO and GO/CuO
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hydrophilic surrounding (Georgakilas et al. 2016). It was
noted that the active GO surface lowers the internal
energy.
Furthermore, CuO has a monoclinic nature and excel-

lent thermal conductivity. Therefore, CuO nanoparticles
together with GO formed a fiber-like structure. The dis-
tribution of chemical elements present in the composite
was examined using the energy dispersive spectrum
(EDS) as shown in Fig. 4.

FTIR analysis
FTIR spectra for GO and GO/CuO nanocomposite is as
shown in Fig. 5.
The bending and stretching modes of O-H groups

were represented as broad spectra present around 3203
cm−1 and the peak at 1734cm−1 Showed C=O stretching
vibrations on the surface of GO. The C-O stretching vi-
brations were assigned to the peak at 1054 cm−1 (Xu
Zhu et al. 2012). This surface functional group exhibited
the probable bonding of CuO on the GO surface. The
peaks at low frequencies below 1000 cm−1 in GO/CuO
spectra could be ascribed to Cu-O-Cu and Cu-O-C vi-
brations (Q Chen et al. 2012). This demonstrated the

chemical composition of GO/CuO where GO was par-
tially reduced in presence of cuprous ions.

Raman spectroscopy
Raman analysis of the GO-CuO nanocomposite is pre-
sented in Fig. 6.
The fundamental vibrations of GO and GO/CuO were

observed in the sequence of 1200 to 1700 cm−1. The D
(disorder bands) and G (tangential bands) were formed
at breathing mode A19 symmetry and first-order scatter-
ing of E29 photons by Sp2 carbon (C-C bond) respect-
ively (AC Ferrari et al. 2006). A broad 2D band of GO
with a higher wavenumber was located at 2918 cm−1

confirming the multilayered nature of GO. The 2D band
of GO/CuO predicted the reduction of GO to rGO
caused GO/CuO to stack. The ID/IG ratio of GO/CuO
was slightly decreased specifiying that there were some
structural changes that occurred during thermal
reduction.

XPS analysis
XPS spectrum of GO and GO/CuO nanocomposite is
presented in Fig. 7. The peaks centered at C, O, and

Fig. 4 EDS of GO and GO/CuO

Fig. 5 FTIR of a GO and b GO/CuO Fig. 6 Raman Spectrum of a GO and b GO/CuO nanocomposite
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CuO are core-level regions associated with C1s, O1s,
and Cu2p peaks respectively.

Deconvoluted spectrum of GO/CuO
A deconvoluted spectrum of GO/CuO is shown in Fig.
8.
Carbon in the nanocomposite was identified by the

high-resolution spectrum of C1s. The major peak at
283.5 eV exhibited sp2 (C-C, C=C) bonding and the
shoulder peaks revealed C=O and O-C=O bonding. The
chemical bonding states of C-OH and C-O-C were lo-
cated at characteristic peaks 286.8 eV. The presence of
CuO and Cu2O was confirmed using high-resolution
O1s spectra. The characteristic peaks observed at 530.2
eV belong to Cu-O, -C=O bonding in GO/CuO. The
peak shown at 532.9 eV was assigned to oxygen present
in GO. The XPS spectrum of Cu 2p showed a peak at
932.5 eV for Cu 2p3/2 and confirmed the presence of
CuO as a catalyst. A binding energy peak at 952.2 eV
was allocated to Cu 2p1/2 (Wu J et al. 2018).

Electrochemical measurements
Linear sweep voltammogram to study the electrocata-
lytic activity of the modified electrodes is represented in
Fig. 9.
The electrodes were scanned at 100 mv/s in presence

of 5 mM D (+) glucose. There was no signal response
detected for bare FTO (curve a). GO/FTO (curve b) and
CuO/FTO (curve c) showed a small increase in back-
ground current due to the large superficial area of GO
and electrocatalytic capability for glucose oxidation of
CuO respectively. A well-defined glucose oxidation peak
was observed for GO/CuO/FTO (curve d) in the pres-
ence of 5 mM glucose at + 0.6 V. This indicates that the
GO/CuO/FTO composite electrode is necessary to ob-
tain high sensitivity and better electrocatalytic activity.

During the oxidation process, CuO was oxidized to
CuOOH and glucose to gluconolactone by Cu (III) (Wei
H et al. 2009).
Further, the electrochemical effect on GO/CuO/FTO

with a variable scan rate was examined using LSV as
shown in Fig. 10. The electrode was scanned from 10 to
300 mv/s (a to h) in PBS electrolyte in the presence of 5
mM D (+) glucose. The oxidation occurred at + 0.6 V
for each scan and the oxidation peak current was in-
creased with an increase in scan rate. This revealed that
electrochemical reaction takes place on GO/CuO nano-
composite demonstrating its ability towards enzyme
sensing (Wang et al. 2012). Hence, further electrochem-
ical and amperometric measurements were carried out
at the optimized potential of + 0.6 V vs. Ag/AgCl.

Amperometric measurements
The amperometric response of the GO/CuO/FTO elec-
trode was measured and presented in Fig. 11a. The pro-
posed electrode revealed that the electron transport
between PBS solution and electrode in the redox process
is enhanced due to the high electrical conductivity and
electrocatalytic activity of the GO/CuO nanocomposite
(Hsu et al. 2012). The calibration curve in Fig.11b dis-
played two linear ranges corresponding to low glucose
concentration (0.1–1 mM) and high concentration (1–
10 mM).
The corresponding linear regression equations were Ip

= 424.95c + 569.22 with R2 = 0.9984 (N = 9) and Ip =
27.666c + 826 with R2 = 0.9963 (N = 9) respectively. For
low glucose concentration the sensitivity was 1274.8 μA
mM−1cm−2 (S/N = 3) whereas for high concentration
was 830 μA mM−1cm−2 along with a low detection limit
of 0.13 μM. A comparative study of performance of vari-
ous glucose biosensors is displayed in Table 1.

Selectivity, stability, and reproducibility
The selectivity and stability of the GO/CuO/FTO sensor
electrode are presented in Fig. 12.
The biological range of glucose concentration in hu-

man serum is 3–8 mM, which is quite greater compared
to other interfering substances like ascorbic acid, dopa-
mine, etc. Hence, the electrode amperometric responses
were examined with 1 mM D (+) glucose with the
abovementioned interfering species (0.1 mM) in PBS
(7.4) solution. It was observed that the glucose sensing
ability of the proposed sensor was unaffected by the
interfering substances. The reproducibility of the sensor
was studied using 10 similar sensors. The current re-
sponse was observed for 1 mM glucose concentration
for each sensor. RSD of 2.7% confirms the significant re-
producibility. The aging effect (stability) of the samples
was also tested periodically for 30 days with of 1 mM
glucose concentration and an RSD of 2.64% was

Fig. 7 XPS spectrum of a GO b GO/CuO
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achieved. This demonstrates that the GO/CuO/FTO
electrode has good repeatability, reproducibility, and sta-
bility as a glucose biosensor.

Determination of glucose concentration in human serum
The blood glucose level in human serum samples was
determined using the proposed glucose biosensor. The
human serum samples were received from a standard
pathology laboratory. The samples were diluted (100

folds) using the standard dilution method before ana-
lysis. The results obtained using the GO/CuO/FTO sen-
sor were compared with the certified values received
from the pathology laboratory (Table 2). The average re-
covery rate was 99.17% along with an RSD of 1.58%
which assured the reliability and applicability of the GO/
CuO/FTO sensor to determine the glucose concentra-
tion in a real sample.

Fig. 8 Deconvoluted spectrum of GO/CuO a C1s, b O1s, and c Cu2p

Fig. 9 LSV of a FTO, b GO/FTO, c CuO/FTO, and d GO/CuO/FTO at
100 mv/s scan rate Fig. 10 LSV of GO/CuO/FTO electrode with variable scan rate
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Fig. 11 a Chronoamperometric response of GO/CuO/FTO. b Calibration curve

Table 1 Comparison of the enzyme-free GO-based glucose sensor with its composites

Electrode Method of detection Potential (V) Sensitivity (μA mM−1 cm−2) Linear range (mM) LOD (μM) Ref.

GO/CuO/FTO Amp 0.6 830, 1274.8 0.1–1
1–10

0.13 Present work

PDDA/Ch/GOx/PtAuNPs/ Amp 0.5 110, 62.3 0.5–2
2–5

0.2 Sridara et al. (2020)

Cu/Cu2O/CSs on GCE Amp 0.65 63.8, 22.6 0.01–0.69
1.19–3.69

0.005 Yin et al. (2016)

Au/GO on GCE Amp 0 5.20, 4.56 0.1–2
2–16

0.025 Shu et al. (2015)

GR–CuO NPs Amp 0.6 1065 1 μM–8 mM 1 Hsu et al. (2012)

GOx/CdS/Gr/GCE CV – 1.76 2–16 0.7 Wang et al., 2011)

GO–CuONPs Amp 0.7 162.52 2.79μM–2.03 mM 0.69 Song et al., 2013)

The prepared GO/CuO/FTO enzyme-free glucose biosensor exhibit good linearity, high sensitivity, low detection limit, and fast response time of 5 s

Fig. 12 a Selectivity and b stability of GO/CuO/FTO glucose sensor
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Conclusion
The GO/CuO/FTO electrode was successfully prepared
using the hydrothermal method and employed as a glu-
cose biosensor. The developed sensor has numerous ad-
vantages, such as a simple, eco-friendly method, quick
detection with LOD 0.13 μM, fast analysis, high sensitiv-
ity of 1274.8 μA mM−1 cm−2 (S/N = 3), good selectivity,
excellent reproducibility, and good stability. The RSD of
1.58% obtained in human serum samples supports the
reliability of the developed biosensor
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