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application of the sinc function using
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Abstract

In magnetic resonance imaging, the fidelity of image reconstruction is an important criterion. It has been suggested
that the infinite-extent sinc kernel is the ideal interpolation kernel for ensuring the reconstruction quality of non-
Cartesian trajectories. However, the application of the sinc function has been limited owing to its computational
overheads. Recently, graphics processing units (GPUs) have been employed as fast computation tools because of
their efficient and versatile parallel computation abilities. We implemented an accelerated convolution function with
the sinc kernel using GPUs computing and evaluated the reconstruction performance. The computation time was
significantly improved: Computation using the proposed method was approximately 270 times faster than that on
a central processing unit (CPU) and approximately 4.6 times faster than that on a CPU optimized by level-3 Basic
Linear Algebra Subprograms. The images reconstructed using the fast sinc function exhibited no adverse errors at
all matrix sizes (resolutions). The total reconstruction time was approximately 0.3–3 s for all matrices, indicating that
the sinc function could be a practical option for image reconstruction. Ultimately, its application would present a
fundamental improvement to the performance of image reconstruction, and the GPU implementation of the
convolution function with the sinc kernel could resolve various challenges in image data processing.

Keywords: Graphics processing unit, Sinc function, Computation time, Convolution function, Non-Cartesian
reconstruction

Introduction
Magnetic resonance imaging (MRI) has been widely used
in medical imaging as a safe and non-invasive method
for the detection and prognosis of diseases (Kraff et al.
2015; Stone et al. 2008; Wright et al. 2014). It has
advanced from two- and three-dimensional imaging to
four-dimensional acquisition and has been combined
with parallel imaging or compressed sensing techniques
for rapid scanning (Hansen et al. 2008; Nam et al. 2013;
Pratx and Xing 2011; Smith et al. 2012). The benefits of
these acquisition methods are generally due to superior
spatial resolution, inducing enhancements to the diagno-
sis of diseases (Hansen et al. 2008; Kraff et al. 2015;
Nam et al. 2013). However, high computational

overheads are incurred by the large datasets and the
complex reconstruction process that resolves the
optimization problem (Hansen et al. 2008; Kraff et al.
2015; Nam et al. 2013; Pratx and Xing 2011; Smith et al.
2012). As the entire sequence time depends on the
amount of both data processing and collection of k-space
(Kasper et al. 2018), a reasonable balance between the
higher image quality (IQ) and the efficiency of acquisition
type is required in a clinical setting (Hansen et al. 2008;
Nam et al. 2013; Pratx and Xing 2011).
The drop in IQ-related motion artifacts could be pre-

vented by an attempt to decrease the total scan time
(Kasper et al. 2018; Stone et al. 2008). Non-Cartesian
(NC) imaging has emerged as an alternative to standard
Cartesian imaging owing to its scanning speed
(Schiwietz et al. 2006; Wright et al. 2014). There are
various approaches to reconstruct an image from NC
scanning raw data (Pauly 2005), but the convolution
function method to resample the data is preferred
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because it preserves reasonable IQ (Rasche et al. 1999).
Its performance is closely related to the characteristics
of the kernel that is used in the reconstruction process
(Jackson et al. 1991; O’sullivan 1985; Rasche et al. 1999).
Jackson et al. improved results using an oversampling
factor and distinct kernel widths (Jackson et al. 1991).
However, some parameter settings contributed to the
optimal performance. The infinite-extent sinc kernel has
been suggested as an ideal interpolation kernel; however,
its clinical application has been hindered due to compu-
tational limitations (Bernstein et al. 2004; Jackson et al.
1991; O’sullivan 1985). Several studies have stated that
the use of the sinc-interpolation function could reduce
digitization error in various fields (Bernstein et al. 2004;
Wang and Liu 2015). A previous study has employed the
sinc kernel for mechanics and not the MRI field; the fre-
quency offset yielded by the sinc function was signifi-
cantly less than that yielded by traditional fixed-kernel
functions (Li et al. 2017). Hence, mitigating the re-
construction time of the ideal kernel may substantially
improve the accuracy of the approximation, leading to a
remarkable reconstruction performance by reducing
artifacts related to mismatches.
Graphics processing units (GPUs) have been consid-

ered a tool for fast computation because of their efficient
and versatile parallel computation (Pratx and Xing
2011). The GPU programs, which are extensions of
standard C programs, can be employed without under-
standing the hardware structure (Hansen et al. 2008;
Nam et al. 2013; Pratx and Xing 2011). Therefore, there
have been approximately 1600 articles on studies per-
taining to the use of GPUs in the MRI field, from 2005
to 2016. These reports have demonstrated that intensive
calculation on a GPU could be accelerated by a factor of
2–285 as compared with the computation on a central
processing unit (CPU) (Wang et al. 2018). Guo et al.
have demonstrated that the reconstruction performance
for PROPELLER trajectory can be improved by a factor
of 9, with suitable image quality (Guo et al. 2009). In
addition, an enhanced algorithm—reverse gridding algo-
rithm—improved the computation by approximately 7.5
times by using GPUs (Yang et al. 2013). Moreover, com-
pressed sensing reconstruction for 3D radial trajectories
has been accelerated by approximately 54 times in car-
diac MR imaging (Nam et al. 2013). They suggested that
GPU computing is suitable for real-time reconstruction.
Although GPU implementations have mostly focused on
massive reconstruction algorithms, the use of a GPU
could sufficiently resolve the fundamental challenge of
sinc function computation.
Many functions are presently implemented on GPUs,

for instance, a parallel of the nonequispaced fast Fourier
transform for arbitrary trajectory (Sørensen et al. 2008),
but the application of the sinc function on a GPU for

NC reconstruction process is yet to be reported. We hy-
pothesized that the images reconstructed by the sinc
interpolation on GPUs do not differ from the reference
images and that the fast sinc function can be practically
utilized in clinical settings. In this article, we review the
theoretical concept in part and present an implementa-
tion of an accelerated convolution function with the sinc
kernel. We then report its computational power for dif-
ferent spatial resolutions and evaluate its reconstruction
performance. Using the proposed strategy, the computa-
tion time is reduced to a level suitable for real-time ap-
plications. Reconstruction fidelity is demonstrated by the
outstanding reproduction of reference images. Lastly, we
conclude the paper with a short summary of the current
study and mention the scope for future work.

Methods
Theory
We utilized the formulation of inverse gridding (INV)
operation on a 2D non-Cartesian trajectory because it is
the most time-consuming step of non-Cartesian recon-
struction [5]. This mathematical formulation partially
follows those of Rasche et al. (1999) and Pauly (2005),
and the objective is to pass a function over the data
sampled on a rectilinear grid. Let m(x, y) and M(kx, ky) be
a Fourier transform pair. To perform INV, m is divided by
kernel c(x, y) for deapodization. Here, m is the inter-
mediate image on Cartesian sampling points obtained by
the gridding function as follows:

mk x; yð Þ ¼ m x; yð Þ
c x; yð Þ

In k-space, this yields

Mkðkx; kyÞ ¼ Mðkx; kyÞ � C−1ðkx; kyÞ

where C−1ðkx; kyÞ ¼ F
(

1
cðx; yÞ

)

At this stage, Mk remains on the Cartesian data points.
To estimate the non-Cartesian data, the image Mk is
convolved by the kernel C(kx, ky) used in the gridding
operation. Subsequently, it is sampled by the Shah
function.

Mðkx; kyÞ ¼ ½Mpðkx; kyÞ � Cðkx; kyÞ�Sðkx; kyÞ
mðx; yÞ ¼ ½mpðx; yÞ � sðx; yÞ�cðx; yÞ

In this equation, we change the kernel C into the sinc
function in the k-space domain as follows:
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where ω ′ = ω/N Δω and N is the matrix size in the x
and y directions. To reduce the computation time as
much as possible, this equation is reformulated as the
following matrix multiplication operation:

S ¼ HEM

where M is the acquired k-space data, and H and E are
matrices for the x- and y-axes, respectively. The first
step is y-axis interpolation in k-space, yielding

Kij ¼
Xnky
j¼1

eij mji

To complete the convolution function of the 2D
image, the successive step is performed by using the
Hadamard product for the x-axis components.

Si ¼
Xnkx
j¼1

hij kij

Reconstruction performance measurements
Reconstruction algorithms for the matrix calculations
were built for both the CPU and the GPU. There are
two manners to implement the sinc function for the
CPU. First, MATLAB (Mathwork, MA, USA) was uti-
lized to evaluate general computation. Subsequently, an
advanced method was employed for maximizing the
speed of the data processing. This method is the level-3
Basic Linear Algebra Subprograms (BLAS) technique,
which performs high-performance matrix–matrix opera-
tions (Dongarra et al. 1990). The GPU program was con-
structed almost identically to the CPU program by using
the cuBLAS technique of the CUDA library (version
7.2). The CPU algorithm was implemented on a CPU
with 8 GB of memory and a core clock speed of approxi-
mately 1200MHz. The GPU algorithm was implemented
on a NVIDIA Geforce GTX 1070 with 8 GB of global
memory and a core clock speed of 1506MHz.
The Shepp–Logan phantom (SL) image was employed

for measuring the computational time and evaluating
reconstruction performance. The matrix size was varied
from 64 × 64 to 512 × 512 in the field of view of 240 ×
240 mm. For the interpolation factor (IPT) setting of the
sinc kernel, we evaluated the zero-padding effect with
several numbers, ranging from 1 to 2 in steps of 0.25, in
single resolution setting (384 × 384). To fairly compare

the original and reconstructed images, the voxel-based
root-mean-squared error (RMSE) was employed. The in-
crease in RMSE from which the IPT was 1.25 (1.3677 ×
10−15 (considered sufficiently as 0.0 in digital process-
ing), 0.0010, 0.0011, 0.0012, 0.0012 from IPT 1 to 2) is
illustrated in Fig. 1. It could be caused by the fact that
the increased sampling rate due to the IPT enhances
Gibbs-ringing artifacts in MR images (Bernstein et al.
2004). Thus, zero padding in our study was not consid-
ered. All reconstruction processes among the GPU and
two-type CPU processing were individually performed
20 times. The average reconstruction times were
recorded, and reconstruction images were acquired. To
validate the fidelity of the reconstruction on the GPU,
the GPU images at all resolutions were subtracted from
the images computed by the CPU libraries and the SL
image. Subsequently, an analysis of RMSE and percent
error (PE) was conducted. The PE is the RMSE of the
reconstructed image divided by the root-mean-
squared value of the reference image, as presented by
Stone et al. (2008).

Results
The average processing times of the sinc convolution were
measured to compare the computational performances of
the CPU and the GPU. The computational time on the
GPU substantially decreased as the amount of data in-
creased. In the highest resolution here, the total recon-
struction time was 727.6, 12.5, and 2.7 s with the sequence
of the normal CPU time (CPUref), the BLAS-optimized
CPU time (CPUopt), and the GPU time, respectively. The
corresponding values of the respective matrix sizes are
listed in Table 1. To evaluate the GPU’s performance, the
speed-up factors were calculated as follows: (1) each CPU
time was divided by the GPU time and (2) CPUref was di-
vided by the CPUopt. Although CPUopt was faster than
CPUref by approximately 58 times, the GPU time showed
substantially rapid computation at approximately 270
times faster than CPUref and 4.6 times faster than CPUopt

(Fig. 2). In contrast, CPUopt at low resolutions was faster
than the GPU time. This implies that the time required to
transfer data to the GPU device was longer than the acti-
vation of threads (Cheng et al. 2014; Hansen et al. 2008;
Smith et al. 2012). These results are in good agreement
with those of previous studies (Hansen et al. 2008; Nam
et al. 2013; Pratx and Xing 2011; Sørensen et al. 2008;
Smith et al. 2012).
We evaluated the image reconstruction errors to valid-

ate the reconstruction fidelity of the GPU program. The
GPU images were identical to the images reconstructed
using the CPU methods in terms of RMSE (= 0.0) as
shown in Fig. 3. Subsequently, we compared the GPU
images to the SL image. Reconstruction errors were ex-
hibited in the subtraction images; however, they were
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sufficiently trivial (RMSE = 1.58 × 10−15). There was no
reconstruction error at all resolutions (Fig. 4). The high-
est RMSE value was 0.0 (1.08 × 10−15) and the PE was
similar (4.38 × 10−13). This indicates that the GPU-based
reconstructed images closely matched the reference
image.

Discussion
The objective of this study was to reduce the computa-
tion time of the convolution function using the sinc

kernel. Compared with the CPU-based computations,
the GPU-based computation achieved a significant accel-
eration of 4.6 to 270 times. Moreover, the reconstructed
images were virtually identical to the reference images.
GPU-based processing tends to perform substantially
better than CPU-based processing. This could lead to
fundamental improvements in image reconstruction.
In clinical and/or research MRI settings, a fast recon-

struction time is required for instantaneous and reliable
responses with respect to IQ (Kasper et al. 2018; Pratx
and Xing 2011; Smith et al. 2012). However, the compu-
tation time is closely related to the square of the data
points (Pauly 2005) and the number of algorithms con-
nected to the process (Oppenheim and Schafer 2014).
Thus, the application of the sinc kernel, which is of in-
finite extent, has been practically limited (Bernstein et al.
2004; Jackson et al. 1991; O’sullivan 1985). We signifi-
cantly reduced the computation time of the sinc func-
tion by approximately 3 s (around 63% compared with
CPUopt), suggesting that the GPU-based sinc function
could be practically used in image reconstruction. The
effect of GPU computing has been demonstrated by re-
ducing massive calculations such as compressed sensing
and/or parallel imaging techniques by 5–65% (Hansen
et al. 2008; Nam et al. 2013; Pratx and Xing 2011; Stone
et al. 2008). More specifically, the total reconstruction
time of prior studies (Hansen et al. 2008; Nam et al.
2013; Smith et al. 2012) was approximately 3–150 s,

Fig. 1 Evaluation of zero-padding effect with respect to each implementation. The reconstructed images at 384 × 384 were subtracted from the
Shepp–Logan image. According to the IPT factor, the signal intensity of the subtraction image is gradually increased. A substantial growth in
RMSE is observed when the IPT is 1.25. Recon-image, reconstructed image; Subt, subtraction; IPT, interpolation factor; RMSE,
root-mean-squared error

Table 1 Average time for each individual resolution step
implemented as a convolution function of the band-limited
kernel

Matrix size CPUref CPUopt GPU

64 × 64 0.173 ± 0.007 0.013 ± 0.001 0.295 ± 0.010

128 × 128 3.195 ± 0.164 0.107 ± 0.006 0.317 ± 0.009

192 × 192 15.733 ± 0.169 0.389 ± 0.007 0.385 ± 0.010

256 × 256 49.451 ± 1.050 1.133 ± 0.029 0.522 ± 0.023

320 × 320 116.072 ± 1.059 2.366 ± 0.016 0.749 ± 0.013

384 × 384 236.919 ± 3.379 4.811 ± 0.055 1.124 ± 0.017

448 × 448 432.670 ± 6.107 7.596 ± 0.018 1.750 ± 0.017

512 × 512 727.586 ± 8.031 12.479 ± 0.076 2.693 ± 0.023

The reconstruction execution time is given in seconds. CPUref = matrix, matrix
operation without optimization; CPUopt = matrix, matrix operation with
BLAS optimization
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which has been mentioned as real-time reconstruction
conditions in 1962–5122 resolutions. Hansen et al. sug-
gested that low-latency reconstruction is suitable for
real-time reconstruction, provided that the speed for

reconstruction is substantially faster than the data acqui-
sition time (Hansen et al. 2008). In addition, the spiral
acquisition for high-resolution 2D-brain imaging (FOV
230mm, 0.5 mm in-plane resolution) requires a minute

Fig. 2 Comparison of the GPU-based reconstruction time with that of optimized CPU time (CPUopt). The speed-up factor is CPUopt and the GPU
time divided by CPUref. Note that the performance of the GPU is not substantially better at lower data quantities

Fig. 3 Reconstruction performance of the sinc function with respect to each implementation at 384 × 384. a The GPU-computed image is
subtracted from CPU-computed reconstructed images. b There is no RMSE with respect to the CPU images. Subsequently, the difference image is
obtained by subtracting the GPU image from the Shepp–Logan image. Reconstruction errors are observed; however, the corresponding values
(RMSE = 1.58 × 10−15) are considered as 0.0 in digital processing
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at 7 T MRI (Kasper et al. 2018). Our result in 512 × 512
resolution took less than 3 s to complete. This indicates
that our study can achieve real-time image reconstruc-
tion using the sinc kernel.
Alternative kernels for a reasonable computation time

not only generate aliasing artifacts but also attenuate the
signal toward the edges of the field of view (Bernstein
et al. 2004; Jackson et al. 1991; Rasche et al. 1999). It re-
quires compensation steps, leading artifacts to be accen-
tuated (O’sullivan 1985; Pauly 2005). In our results, the
images reconstructed by the fast sinc function showed
no adverse effects. This outstanding performance (RMSE
and PE = 0.0) is attributable to the wide range of the ker-
nel, which multiplies the center of an image domain by a
constant value as a rectangular shape (Bernstein et al.
2004; O’sullivan 1985; Rasche et al. 1999). It sufficiently
supports that a band-limited function basically has the
least transition by the apodization (Pauly 2005). We an-
ticipate that a realistic application of this function could
simplify the non-Cartesian reconstruction process. An
efficient way to decrease influences by several kernels
has been demonstrated by applying an oversampling fac-
tor (Rasche et al. 1999), but zero-filling could induce in-
creases in reconstruction time and truncation artifacts
(Bernstein et al. 2004). We exhibited the reconstruction
errors caused by IPT (RMSE = 0.001 – 0.0012), although

they were minor quantities. Hence, there was no IPT ap-
plication step in our study. Moreover, the deapodization
stage, which compensates for alternative kernels (Pauly
2005; Rasche et al. 1999), could be extracted owing to
the excellent performance of the sinc function. Further-
more, this could presumably relieve the overheads of the
iterative step for an actual trajectory estimation (Pauly
2005), which can additionally reduce the computation
time. Consequently, the sinc function-based on GPU
would present fundamental improvements in image data
processing.
Our GPU-based implementation is restricted to a max-

imum resolution of 512 × 512. This inherently depends on
the size of the global memory in the GPU and could be im-
proved by further parallelization methods such as utilizing
shared cache memory access, grid-level concurrency, and
multi-GPU techniques (Cheng et al. 2014; Pratx and Xing
2011). These methods should further increase the compu-
tation power for larger datasets. We used the Shepp–Logan
phantom image as an intermediate image and employed a
uniform sampling pattern. Hence, the initial reconstruction
condition in the inverse gridding operation was not satis-
fied. To complete the progress of non-Cartesian recon-
struction, a gridding function with an identical kernel
should be implemented for an intermediate image (Rasche
et al. 1999) and the arbitrary sampling should be estimated

Fig. 4 Performance evaluation of the GPU-based implementation of the sinc function. The difference between the results and the Shepp–Logan
phantom (SL) images is hardly visible. The GPU-implemented fast sinc function obtains no reconstruction errors. RMSE, root-mean-squared error;
PE, percent error
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for the actual trajectory (Pauly 2005; Wright et al. 2014).
Because the IQ obtained by non-Cartesian acquisition has
been competitively improved (Kasper et al. 2018), the per-
formance with the entire reconstruction process should be
demonstrated in the in vivo imaging by a comparison with
the Cartesian acquisition.

Conclusion
We implemented a GPU-based method for the accelerated
computation of the sinc function. Its application enables a
band-limited function to be practically used, resulting in
an improved performance with few errors. A GPU-based
MRI reconstruction could be used to dramatically reduce
image delivery time to physicians and researchers. In
addition, the GPU-based implementation of the convolu-
tion function with the sinc kernel may help resolve various
challenges in the field of MRI research.
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