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Abstract 

Urinary exfoliated tumor cells have emerged as promising biomarkers for predicting, diagnosing, and guiding 
therapy in bladder cancer. Several methodologies based on biological and physical differences between normal cells 
and malignant tumor cells have been developed over the past few years. However, these methods still did not have 
sufficient sensitivity or specificity. In this study, a remote analysis protocol was devised utilizing motion microscopy. 
This technique amplifies vibrations within a recorded video by re-rendering motions, thereby generating highly 
magnified visuals. This approach aims to detect dynamic motions that may not be perceptible to the human eye 
under normal observation. Remarkably, motion microscopy unveiled discernible fluctuations surrounding bladder 
malignant tumor cells, which we referred to herein as cellular trail. The cellular trails were predominantly evident 
at around 1 Hz in amplified video images, with a velocity of 22 μm/s. Moreover, cellular trails were observed regard-
less of whether they were in a non-Newtonian or Newtonian fluid environment. Significantly, this phenomenon 
was distinguishable even in urine samples. In conclusion, we suggest motion microscopy as an innovative approach 
for detecting urinary malignant tumors with potential clinical utility as a complementary tool to cytology.
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Introduction
Urothelial bladder carcinoma comprises the majority of 
bladder cancer cases and ranks as the second leading 
cause of mortality, accounting for an estimated 150,000 
deaths annually (Jemal 2011). Hence, individuals with 
bladder cancer need persistent screening, depending on 
cytology and cystoscopy with tissue biopsies as the pri-
mary detection tools (Tilki et  al. 2011). However, the 
challenges of low sensitivity and high variability in cytol-
ogy with the high degree of invasiveness are major issues 
for diagnosis (van Rhijn et al. 2009). Therefore, a nonin-
vasive technique for a rapid and precise detection of 
bladder carcinoma is highly desired. Urinary exfoliated 

malignant tumor cells have been used as a diagnostic 
marker in bladder cancer for decades (de Oliveira et  al. 
2020; Bhat and Ritch 2019). To capture urinary exfoliated 
malignant tumor cells, several techniques have been used 
and applied (Wu et al. 2023; Hayashi et al. 2020). These 
techniques are composed of density-based separation, 
microfilters, immunoaffinity, microfluidic sorting, or 
combination of these methods (Tilki et al. 2011; Ng et al. 
2021; Harouaka et  al. 2014). A recent technology based 
on microfluidic system uses deterministic lateral dis-
placement with continuous high throughput to separate 
urothelial malignant tumor cells from urine (Chen et al. 
2018). To develop a more convenient method, we have 
developed and reported a novel method to visualize spe-
cific microvibration of malignant tumor cells in continu-
ous flow (Kim et  al. 2020). Motion microscopy creates 
new images in a way that enhances the motions enough 
to be perceptible to the human eye (Wadhwa et al. 2017; 
Hurlburt and Jaffey 2015; Sellon et al. 2015). The princi-
ple is to magnify the subtle motion signals stored in each 
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pixel of a digital image. Therefore, better amplification 
signals for specific frequencies can be generated with a 
higher number of pixels in a digital image (Wadhwa et al. 
2017). Spatial local phase information was combined in 
different sub-bands of frames for each pixel at location 
(x, y), time t, scale r, and orientation θ using squares 
objective function (Wadhwa et  al. 2017; Hurlburt and 
Jaffey 2015; Kim et  al. 2020), 
argmin

u,v i

A2
ri,θ i

∂ri,θ i
x ,

∂ri,θ i
y (u, v)−�φri,θ i

2
 . In a previ-

ous study, we were able to differentiate breast malignant 
tumor cells from blood using motion microscopy (Kim 
et  al. 2020). This phenomenon was attributed to fluid 
friction induced by the roughness on the surface of 
malignant tumor cells. In this study, we hypothesized 
that the surface of bladder malignant tumor cells might 
also increase fluid resistance. Therefore, we conducted 
experiments using motion microscopy to investigate the 
potential of detecting tumor cells in urine.

Materials and methods
Cell culture
The SV-HUC-1 cells (ATCC, CRL-9520, USA) or blad-
der carcinoma 5637 (ATCC, HTB-9, USA) were cultured 
in RPMI 1640 (A2494201, Gibco, USA) supplemented 
with 10% heat-inactivated fetal bovine serum (A3160401, 
Gibco, USA), 2  mM glutamine, 20  mM Hepes (pH 7.5) 
and maintained at 37℃ under an atmosphere of 95% 
 O2 and 5%  CO2. Urothelial cells were obtained using a 
screen cell cytometer (ScreenCell, CY4FC, UK) from 
urine. 40  ml of urine for each sample was treated with 
imidazolidinyl urea (I5133, Sigma-Aldrich, USA; 20  g/L 
of total volume) and stored at 4  °C. Human urine sam-
ples were obtained from individuals with bladder can-
cer (UETC008C-BLCA UETC, N = 18, BIOIVT, USA) or 
normal control group (HUMANURINE-0101417, N = 18, 
BIOIVT, USA) using institutional review board (IBR)-
approved consent forms and protocols.

Experimental procedures of motion microscope 
and microfluidic device
Urinary exfoliated cells were introduced to microflu-
idic device at a flow rate of 22  μm/s, and images were 
recorded through microscope at 1024 × 576 pixels and 
900 frames per second. The recorded images were 
uploaded to lambda vue (https:// lambda. qrilab. com/ 
site/), and magnification was done with amplification 
ratio of 35 and wavelength from 0.1 to 10 Hz. Microflu-
idic devices (Microfit, South Korea) were placed on the 
stage of the microscope, and the fluid flow was controlled 

by individual syringe pumps (BS-9000–12, Braintree sci-
entific, USA).

Quantification of cellular vibration intensity
The obtained images were subtracted through the roll-
ing ball radius method, and cellular trails were individ-
ually selected. The area of histograms was quantified by 
ImageJ (Java-based image processing and analysis soft-
ware). Data were acquired as arbitrary area values.

Measurement of viscosity
Hyaluronic acid (75,043, Sigma-Aldrich, USA) was 
slowly mixed with PBS (10,010,023, Gibco, USA) until 
completely liquefied. Viscosity was measured with a 
plate digital viscometer (ASTM D4287, Industrial phys-
ics Inks & coatings, the Netherlands), and shear rates 
were generated by rotating brush.

Fluorescence microscope
Briefly, urothelial cells were placed in 10% formalin 
for 3 h and incubated with antisera against FITC-con-
jugated CD47 (1:400; ab300124, abcam, USA). After 
washing with PBS, cells were visualized using Zeiss 
LSM 510 confocal microscope (Carl Zeiss, German).

Bladder tumor antigen and nuclear matrix protein 22
The urine sample is also analyzed with bladder tumor 
antigen stat (21-000-131, Polymedco, USA) and nuclear 
matrix protein 22 BladderChek (ALERE NMP22, 
Abbott, USA). Briefly, 3 drops of fresh urine are added 
to kits and allowed for a room temperature reaction for 
30  min. In both tests, a positive result is determined 
when two distinct lines appear in both the target and 
control zones, while a negative result is indicated by the 
presence of only the control line.

Statistical analysis
Values are means ± SE. The significance of differences 
was determined by a two-way analysis of variance 
(ANOVA), or a one-way ANOVA followed by a Bonfer-
roni post hoc analysis where appropriate. Differences 
were considered significant when P < 0.05.

Results and discussion
Design of cellular vibration analysis
Urothelial cells were obtained through filtration from 
urine, and experiments were subsequently conducted. 
To address the focusing issues arising from the different 
phases of multiple cells, we employed microfluidics to 
induce cell rolling on the surface. Urothelial cells were 
flowed through a polydimethylsiloxane-based microflu-
idic channel at a flow rate of 22 μm/s. Subsequently, the 
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cells were recorded at a frame rate of 600 per second 
with an image resolution of 1024 × 576 pixels (Fig. 1A). 
Cellular movements were amplified by a motion micro-
scope, with detailed settings including color mode and 
magnification type (Fig. 1B), a wavelength range of 0.1 
to 10 Hz (Fig. 1C), and an amplification rate of 35 times 
(Fig. 1D). The modified images were obtained through 
the outlined process (Fig. 1E).

Vibration of bladder malignant tumor cells according 
to wavelengths
Due to the reported diverse vibrations of cancer cells 
ranging from 0.5 to 3 Hz (Nelson et al. 2017), the sub-
tle movements of SV-HUC-1 (nonmalignant urothe-
lial cells) or 5637 (bladder malignant tumor cells) 
were amplified using a motion microscope within the 
frequency range of 0.5 Hz to 10 Hz. Here, 1 Hz corre-
sponds to 60 invisible repetitive movements over 60 s. 
Interestingly, distinctive cellular trails were promi-
nently observed in 5637 cells, but not in SV-HUC-1 
cells (Fig.  2A, B). The cellular trails began to appear 

Fig. 1 Contact-free detection system to measure cellular vibration. A Schemata of the experimental setup of microfluidic device and motion 
microscope. Urothelial cells were obtained using a screen cell cytometer from urine. The cells were subjected to the microfluidic device at a flow 
rate of 22 μm/s, and video recording files were obtained from the microscope at 1024 × 576 pixels at 600 frames per second. Motion microscope 
amplified micromotions by video using spatial local phase. B The obtained videos were entered at lambda vue, and color modes were selected 
in magnification type. After setting the wavelength between 0.1 and 10 Hz (C), cellular vibrations were amplified 35 times (D) and magnified images 
were obtained (E)
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from 0.5  Hz and eventually became challenging to 
detect from 2 to 10  Hz (Fig.  2C). There was no nota-
ble difference in the size of SV-HUC-1 or 5637 cells 
(Fig. 2D). Based on these findings, it was possible to dif-
ferentiate tumor cells from urothelial cells regardless of 
their size under the specified conditions.

Tumor cellular trails were even observed in the urine
To confirm the feasibility of analyzing urothelial cells 
directly from urine samples, microscopic vibrations of 
cells were observed in various solutions. Cellular trails 
of 5637 cells were compared in cell culture medium, 
urine, or hyaluronic acid (Fig.  3A). Better observation 
of microscopic vibrations in hyaluronic acid, a type of 

Fig. 2 Motion magnified video revealed cellular trail at 0.5–1.5 Hz. The images of microvibration of SV-HUC-1 (A) or 5637 (B) were converted 
by a motion microscope at 0.1 Hz to 10 Hz. 5637 showed distinct cellular trails (arrow heads) between 0.5 and 1.5 Hz. C Intensity levels of cellular 
trails in motion magnified videos between 0.5 and 1.5 Hz. D Diameters of urothelial cells. Results are the means ± SE of 6 experiments in each group. 
*Significantly different from motion magnified videos at 0.1–0.5 Hz, P < 0.05
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non-Newtonian fluid, had been reported (Park et  al. 
2022). However, there was no significant difference in 
the cellular trails using the various solutions (Fig.  3B). 
By measuring the viscosity of solutions based on shear 
stress, 0.02% and 0.05% hyaluronic acid exhibited non-
Newtonian characteristics, while the cell culture medium 
and urine displayed Newtonian properties (Fig. 3C).

Motion microscope increases sensitivity of detecting 
bladder cancer
We next assessed human urine samples using motion 
microscope. Malignant tumor cells were stained with 
CD47 antibody and confirmed using fluorescence 
microscopy (Fig. 4A). We found that cellular trails can be 
clearly distinguished between malignant tumor cells and 
normal cells (Fig. 4B). The conventional urinary cytology 
and recently developed urine markers used for the clini-
cal diagnosis of bladder cancer are often hampered by 

their limited sensitivity. To examine the performance of 
our motion microscope with other techniques, we com-
pared it with bladder tumor antigen or nuclear matrix 
protein 22. The bladder tumor antigen or nuclear matrix 
protein 22 detection methods yielded a sensitivity of 
67–78%, whereas motion microscopy method detected 
tumor cells with a sensitivity of 85–89% (Fig. 4C). It has 
not been known which part of the bladder tumor cells 
caused the microvibration. However, it has been reported 
that filopodia and extracellular matrix are related to fluid 
friction (Bera et  al. 2022; Park et  al. 2022) and linked 
to microvibrations on the cell surface (Park et  al. 2022; 
Kim et  al. 2020). The filopodia and extracellular matrix 
are frequently observed on the surface of bladder tumor 
cells. Overall, bladder malignant tumor cells were clearly 
distinguishable from normal urothelial cells using the 
motion microscope under condition of 22 μm/s and 0.5–
1.5 Hz (Fig. 5). To clarify, further explanation is needed 

Fig. 3 Cellular trail in various solutions. A Cellular trails of 5637 were compared in cell culture medium (RPMI 1640), urine, or hyaluronic 
acid. B Intensity levels of cellular trails in motion magnified videos between 0.5 and 1.5 Hz. C Viscosity of hyaluronic acid was measured 
with a cone-and-plate digital viscometer at six different shear rates. The viscosity values for 0.02 and 0.05% hyaluronic acids were followed a pattern 
of a non-Newtonian fluid. Results are the means ± SE of 6 experiments in each group. *Significantly different from cell media treated group, P < 0.05
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Fig. 4 Motion microscopy for bladder cancer detection. A Detection of bladder tumor cells by cellular trails in urine obtained from bladder cancer 
patients. Human bladder cancer cells were immunostained with CD47 antibody using fluorescence microscopy. The intensity level of cellular trails 
(arrows) was determined in motion magnified videos. B Intensity levels of cellular trails in motion microscopy. C Comparison with bladder tumor 
antigen, nuclear matrix protein 22 detection method, or motion microscope to detect bladder cancer cells in human urine samples. Results are 
the means ± SE of 6 experiments in each group. *Significantly different from cellular trail of nonmalignant cells, P < 0.05. #Significantly different 
from bladder tumor antigen method, P < 0.05
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on the principle behind the motion microscope detecting 
vibrations of cancer cells. Initially, it was understood that 
the vibrations of cancer cells were related to mitochon-
drial activity. However, there was no apparent connection 
between cellular vibration and mitochondria (Kim et al. 
2020). The observation that these vibrations occurred 
only when cancer cells flowed through the solution led to 
the hypothesis that they were due to the physical proper-
ties of the cell surface rather than the interior of the cell 
(Kim et  al. 2020). Experimental observation indicated 
that the surface of cancer cells had extracellular matrix 
and filopodia, which could easily induce fluid friction. 
Irregular shapes tend to induce fluid friction more effec-
tively (Park et al. 2022).

Conclusion
The purpose of the current experiment is to develop diag-
nosis of urinary exfoliated tumor cells through visualiza-
tion of microscopic vibrations. The presence or absence 
of malignant tumor cells was able to be confirmed 
through continuous video recording directly from the 
urine sample with higher sensitivity than conventional 
methods. Together, we offer a novel tool for detection of 
bladder cancer which may be used for assessment of drug 
efficacy with potential clinical utility.
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