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Abstract 

This study aimed to compare the spectroscopy, morphological, electrocatalytic properties, and antibacterial activi-
ties of cobalt nanoparticles (CoNPs) with nickel nanoparticles (NiNPs). Cobalt nanoparticles and NiNPs were prepared 
via a chemical reduction approach and characterized utilizing transmission electron microscopy (TEM), energy-disper-
sive X-ray (EDX), and X-ray diffraction (XRD) techniques. The result from XRD and TEM analysis revealed that the syn-
thesized nanoparticles exhibit face-centered cubic with smooth spherical shape, having average particles size 
of 12 nm (NiNPs) and 18 nm (CoNPs). The electrochemical properties of the nanoparticles were examined via cyclic 
voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. The CV results showed that GCE-
Ni (35.6 μA) has a higher current response compared to GCE-Co (10.5 μA). The EIS analysis revealed that GCE-Ni (1.39 
KΩ) has faster electron transport capability compared to GCE-Co (2.99 KΩ) as indicated in their Rct values. The power 
density of the synthesized nanoparticles was obtained from their "knee" frequency (f°) values, with GCE-Ni (3.16 Hz) 
having higher f° values compared to GCE-Co (2.00 Hz). The antibacterial activity of the nanoparticles was evalu-
ated against multidrug-resistant Escherichia coli O157, Escherichia coli O177, Salmonella enterica, Staphylococcus 
aureus, and Vibrio cholerae. The result from the antibacterial study revealed that at low concentrations both CoNPs 
and NiNPs have significant antibacterial activities against E. coli O157, E. coli O177, S. enterica, S. aureus, and V. cholerae. 
NiNPs showed better antibacterial activities at low concentrations of 61.5, 61.5, 125, 61.5, and 125 µg/mL compared 
to CoNPs with minimum inhibitory concentrations of 125, 125, 250, 61.5, and 125 µg/mL against E. coli O157, E. coli 
O177, S. enterica, S. aureus, and V. cholerae, respectively. These promising antibacterial activities emphasize the poten-
tial of CoNPs and NiNPs as effective antibacterial agents, which could aid in the development of novel antibacterial 
medicines.
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Introduction
The high mortality and morbidity resulting from disease 
outbreak cases worldwide is associated with the increas-
ing incidence of antibiotic resistance among pathogens 
(Hofer 2019). As a result, the quest to synthesize metal 
nanoparticles as an alternative approach to combat path-
ogens becomes necessary. Metal-based nanoparticles 
with novel antibacterial properties are potentially prom-
ising areas for overcoming the limitations of antibiotics 
and resistant spread (Breijyeh et  al. 2020; Abolarinwa 
et  al. 2022; Ajose et  al. 2022). Nanoparticles and nano-
materials are gaining prominence in the field of medicine 
owing to their diminutive size and large surface area-to-
volume ratio (Rashidi Ranjbar et  al. 2020; Saidin et  al. 
2021). Metal nanoparticles have drawn increasing atten-
tion for their possible antibacterial activities owing to 
their distinct physicochemical properties (Abolarinwa 
et al. 2022). Transition metal nanoparticles, for example, 
have been widely researched for their prospective appli-
cations in electronics, catalysis, and biomedical sciences 
(Dutta et al. 2020). Nickel nanoparticles and CoNPs have 
gained special interest due to their remarkable catalytic 
and magnetic capabilities (Tian et al. 2016).

Synthesis methods are critical in identifying nanoparti-
cle physicochemical characteristics. Nanoparticle charac-
terization is crucial in comprehending their chemical and 
physical properties, which can influence their biological 
activities. Cobalt nanoparticles are renowned for their 
high melting point, oxidation resistance, and magnetic 
properties. They are frequently utilized in energy storage 
devices, biological imaging, catalysis, and magnetic data 
storage, such as hard disk drives (Barakat et al. 2009). On 
the other hand, NiNPs possess high conductivity with 
outstanding mechanical properties, making them suita-
ble for catalytic, sensor, and electronic applications. They 
are also used in magnetic data storage and manufac-
ture of rechargeable batteries, such as nickel–cadmium 
and nickel-metal hydride batteries (Calandra 2009). In 
biomedical applications, both CoNPs and NiNPs have 
shown potential for use in drug delivery, imaging, and 
cancer therapy (Gupta et al. 2007).

Cobalt nanoparticles and NiNPs have been found 
to possess antibacterial properties, which make them 
attractive for use in medical and industrial applications. 
Research studies have shown that these nanoparticles 
can effectively inhibit the growth and proliferation of 
bacteria of several types, encompassing Gram-positive 
and Gram-negative ones (Fazal et al. 2022; Harish et al. 
2022; Sarian et  al. 2022; Hassan Afandy et  al. 2023). 
The antibacterial properties of these nanoparticles are 
thought to be due to their ability to generate reactive 
oxygen species (ROS) that can damage bacterial cell 
membranes and inhibit bacterial growth (Saravanan 

et  al. 2021). Additionally, the small size of the nano-
particles allows them to penetrate bacterial cells more 
easily, leading to increased antibacterial activity (Sun 
et  al. 2021). Furthermore, nanoparticles with smaller 
particle sizes have shown good antibacterial activity 
(Azam et  al. 2012). The investigation of the antibacte-
rial efficacy of nanoparticles was extensively researched 
using human pathogenic microorganisms such as E. 
coli (Al-Nabulsi et  al. 2020; Xiao et  al. 2021) and S. 
aureus (Attallah et al. 2022; Shaaban et al. 2023). More-
over, these microbes seem highly sensitive to transition 
metal nanoparticles (Yang et  al. 2021; Jeevanandam 
et al. 2022).

Several metal oxide nanoparticles have been reported 
for their potential antibacterial activities against Gram-
negative and Gram-positive bacteria, consisting of 
Klebsiella pneumoniae, Escherichia coli, Pseudomonas 
aeruginosa, and Staphylococcus aureus. These metal 
oxide nanoparticles include  Al2O3 (Jawad et  al. 2021; 
Karimi et  al. 2021), CuO,  Cu2O, ZnO (Asamoah et  al. 
2020; Karuppannan et  al. 2021; Han et  al. 2022; Khos-
ravi et  al. 2022), CaO (Abbas and Aadim 2022),  MnO2, 
MgO (Ogunyemi et al. 2020; Amrulloh et al. 2021),  TiO2 
(Wang et  al. 2020; Zhang et  al. 2021),  Fe3O4 (Azizabadi 
et  al. 2021; Kamali et  al. 2022),  Ag2O (Rashidi Ranjbar 
et al. 2020; Dharmaraj et al. 2021; Mahlambi and Moloto 
2022), NiO (Kannan et al. 2020; Christy et al. 2021), and 
 SiO2 (Attallah et al. 2022; Tran et al. 2023). The antibac-
terial activity lies in its physical and chemical proper-
ties, which include morphology, chemical composition, 
particle size, surface characteristics, solubility, crystal-
linity, aggregation, and crystal phase. The activity is also 
affected by the experimental conditions, nanoparticle 
concentration as well as type and number of bacteria. The 
pores within the bacterial external cellular membranes 
exhibit dimensions on the nanometer scale, while the size 
of bacterial cells is in the micrometer range. Since nan-
oparticles can be smaller than bacterial pores, they can 
permeate the cell membrane in a novel way (Abolarinwa 
et al. 2022). Preparing metal nanoparticles that are stable 
enough to effectively inhibit bacterial growth while in a 
nutrient medium is a serious issue.

Going through the literature, minimal information is 
available on the antibacterial properties of CoNPs and 
NiNPs. Realizing the potential antibacterial applications 
of these transition metal nanoparticles, we thereby syn-
thesized CoNPs and NiNPs using a chemical reduction 
approach, examined their electrochemical properties via 
CV and EIS techniques, and then verified their antibac-
terial activities against Escherichia coli O157, Escherichia 
coli O177, Salmonella enterica, Staphylococcus aureus, 
and Vibrio cholerae. Additionally, the antibacterial activi-
ties of these metal nanoparticles were compared, as these 
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properties are essential for their prospective usage in a 
variety of biomedical applications.

Materials, reagents, and instruments
Cobalt acetate tetrahydrate, potassium hexacyanofer-
rate IV  (K4(Fe(CN)6), sodium borohydride, N,N-dimethyl 
formamide (DMF), ethylene glycol, sodium dihydrogen 
phosphate  (NaH2PO4) potassium hexacyanoferrate III 
 (K3(Fe(CN)6), disodium hydrogen phosphate  (Na2HPO4) 
were procured from Sigma-Aldrich, a reputable supplier 
based in Darmstadt, Germany. Ethanol, hydrochloric acid 
(HCl), hydrazine hydrate, sulfuric acid, sodium hydroxide 
(NaOH), and nickel chloride were sourced from Glass-
world Chemicals, a company based in Johannesburg, 
South Africa. Every reagent was of high analytical grade.

Various techniques were employed to analyze the mor-
phology and structure of the nanoparticles that were 
produced. Energy diffraction X-ray (EDX) analysis was 
performed utilizing a JEOL JSM-6610 LV equipment 
from Dearborn, USA. The UV–visible spectrophotome-
try analysis was conducted with a Cary 300 series UV–vis 
spectrometer sourced from Agilent Technology, based 
in Darmstadt, Germany. X-ray diffraction (XRD) analy-
sis was performed utilizing instrumentation provided by 
Bruker Company, headquartered in Karlsruhe, Germany. 
The transmission electron microscopy (TEM) analysis 
was conducted employing a JEOL2100 instrument that 
was equipped with a LaB 6 electron gun manufactured by 
JEOL Ltd, based in Tokyo, Japan.

An electrochemical investigation involving cyclic vol-
tammetry (CV) and impedance spectroscopy (EIS) was 
performed using an Autolab Potentiostat PGSTAT 302, 
manufactured by Eco Chemie in Utrecht, the Nether-
lands. The experimental setup was controlled by GPES 
software (version 4.9) and NOVA 2.1.3 software with 
FRA 32 module, which allowed for a frequency range 
spanning from 100  kHz to 0.1  Hz. Distilled water was 
used while carrying out all the experiments.

Cobalt and nickel nanoparticles synthesis
Cobalt nanoparticles were chemically synthesized via 
the dissolution of 2.0 g of cobalt acetate tetrahydrate in a 
solution comprising 2 mL of water and 8 mL of ethanol, 
followed by a 15-min stirring period. Next, under contin-
uous agitation, a 5.0 mL volume of a sodium borohydride 
solution with a concentration of 1.08  M was gradually 
introduced into the amalgamation at a rate of 2 drops 
per second. This process continued until the formation 
of a greyish-black precipitate occurred. The greyish-black 
particles were gently collected using a magnet from the 
mixture and subjected to multiple washes with distilled 
water and ethanol. Subsequently, the particles were dried 
at room temperature for 24 h (Cruz et al. 2019a).

The production of NiNPs was accomplished by intro-
ducing 8 mL of a 1 M sodium hydroxide (NaOH) solution 
into an 800  mL ethylene glycol comprising a combina-
tion of 2 g nickel chloride and 10 mL hydrazine hydrate. 
The reaction mixture within a sealed container under-
went continuous agitation for a duration of 45 min at a 
temperature of 70  °C. The black particles obtained were 
subjected to a meticulous cleaning process using etha-
nol (100%). Subsequently, the particles were sealed under 
vacuum conditions at a temperature of 27 °C for a dura-
tion of 24 h (Wu et al. 2012).

Glassy carbon electrode (GCE) modification procedure
The bare GCE undergoes a preliminary electrode treat-
ment before being modified with the prepared nano-
particles. This was done by rubbing its surface on a Sic 
Emery pad soaked with aluminum oxide paste. After-
ward, enough distilled water was used to rinse the GCE 
to eliminate any leftover aluminum oxide particles. To 
achieve thorough cleaning, the GCE was ultrasonicated 
for about 5 min in a container containing distilled water, 
followed by another 5 min in methanol. Each of the nan-
oparticle pastes was applied to the cleaned GCE surface 
via a drop-casting method. The cleaned GCE was modi-
fied with about 5 µL of the prepared CoNPs and NiNPs 
using drop-dry method, for about 5 min at 50  °C in the 
oven. The coated electrodes were designated as GCE-Co 
and GCE-Ni.

Antimicrobial assay of the nickel and cobalt nanoparticles
The bacterial isolates
Five pathogenic bacteria (Escherichia coli O157, Escheri-
chia coli O177, Salmonella enterica, Staphylococcus 
aureus, and Vibrio cholerae) were obtained from the 
Antimicrobial Resistance and Phage Biocontrol Labora-
tory, Department of Microbiology, North-West Univer-
sity (Mafikeng Campus), South Africa. The bacteria had 
been confirmed to be multi-drug resistant, and details on 
the bacteria source, virulence, and multi-drug resistance 
profiles are described in Table 1.

Preparation of bacteria culture
Before NPs antimicrobial test, the isolates were revived 
by cultured in nutrient broth and subjected to incuba-
tion at a temperature of 37 °C for a duration of 24 h. The 
absorbance of the bacterial cultures was standardized 
using a spectrophotometer (MB-580 model, Shenzhen 
Huisong Technology Development Co., Ltd., Shenzhen, 
China) to achieve a standardized value of 0.5 on the Mac-
Farland Standard scale.
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Nanoparticles preparation for antibacterial test
Before the NPs antimicrobial test, the NPs were heated 
for aim of sterilization in an oven for 2  h. Thereafter, 
NPs suspension (1000  µg/mL) was prepared by adding 
1000 µg of each NPs to 1 mL of an organic solvent, dime-
thyl sulfoxide (DMSO). The mixture was sonicated for 
few minutes to form a solution.

Antibacterial activity of nickel and cobalt nanoparticles
The bacteria’s susceptibility to the NPs was examined via 
disc diffusion technique. First, freshly prepared Muel-
ler–Hinton Agar (MHA) was inoculated with a stand-
ardized bacteria culture. Thereafter, sterilized paper disc 
soaked in NPs solution was placed aseptically on inocu-
lated MHA and incubated at a temperature of 37  °C for 
a duration of 24  h. The paper disc containing DMSO 
was adopted as control. The zones of inhibition were 
observed and measured in millimeter. The experiments 
were performed in triplicate.

Minimum inhibitory concentration of nickel and cobalt 
nanoparticles
The minimum inhibitory concentration (MIC) of the 
NPs was evaluated utilizing 96-microplate broth dilution 
method. Firstly, all the microtiter plate wells marked for 
the experiments were filled with 100 µL of sterile dou-
ble-strength nutrient broth. Exactly, 100 µL of the NPs 
(1000  µg/mL) solution was added to the first well and 
dilution was carried out to obtain various concentrations 
(31.25, 62.5, 125, 250, and 500 µg /mL) of the nanopar-
ticles. Thereafter, a 10 µL of the standardized bacteria 
was aseptically dispensed to each well and incubated at 
37  °C. Immediately (at 0  h) and after 24  h, the optical 
density (OD) of the suspension in the microtiter plates 
was measured using a microplate reader at 630 nm. The 
DMSO was used as solvent control. The experiments 
were performed in triplicate. The MIC of NPs was taken 
as the lowest concentration of the NPs where its OD at 
24 h was equal to OD at 0 h.

Minimum bactericidal concentration of nickel and cobalt 
nanoparticles
The minimum bactericidal concentration (MBC) of the 
NPs against the bacterial pathogens was determined 
from MIC experiment. Immediately the MIC was deter-
mined, and the wells that contained suspension of MIC 
and above concentration were marked. Exactly 100 µl of 
the suspension from each marked well was withdrawn 
and mixed with nutrient agar at 45 °C and pour into Petri 
dish plate. Thereafter, the plates underwent incubation 
for 24 h at 37 °C and observed for colony formation. The 
MBC was taken as the minimum concentration of NPs at 
which no visible colony was observed.

Results and discussion
Energy‑dispersive X‑ray analysis
Energy-dispersive X-ray is a useful technique for analyz-
ing the elemental composition of nanoparticles, as it is 
non-destructive and can provide information about the 
composition of the sample at the nanoscale. The elemen-
tal composition of CoNPs and NiNPs is given by their 
EDX spectra depicted in Fig. 1. The existence of a small 
percentage of carbon, sodium, and oxygen in Fig.  1a 
(CoNPs spectrum) is intruded impurities from the pre-
cursors, ditto to Fig. 1b (NiNPs spectrum) where the car-
bon and oxygen were also impurities from the precursors.

X‑ray diffraction analysis
The crystalline structures of the synthesized CoNPs and 
NiNPs were examined via XRD. As shown in the XRD 
diffractograms, both CoNPs and NiNPs (Fig.  2) exhibit 
three major diffraction peaks each. Cobalt nanoparticles 
have its diffraction peaks at 2θ of 44.7° (1 1 1), 52.0° (2 0 
0), and 76.3° (2 2 0), which correspond to the face-centered 
cubic (FCC) crystal structure of pure CoNPs. The diffrac-
tion peaks observed exhibit a resemblance to those docu-
mented in the literature for CoNPs (Khusnuriyalova et al. 
2021; Shi et al. 2021; Cruz et al. 2019b), thereby confirm-
ing the accomplished synthesis of pure CoNPs in the FCC 

Table 1 Virulence and antibiotics resistance profile of the bacteria sample

Bacteria Source Virulence gene Antibiotics resistance profile

E. coli O156 Cattle faeces β-D-glucuronidase gene (uidA), Shiga toxin 1 (stx1), Shiga 
toxin 2 (stx2), Intimin gene (eae)

Azithromycin, Rifamycin, Penicillin, Ampicillin, Sulfameth-
oxazole, Tetracycline

E. coli O177 Cattle faeces β-D-glucuronidase gene (uidA), Heat-stable toxin (St), Heat-
labile toxin (lt), Intimin gene (eae)

Azithromycin, Rifamycin, Penicillin, Ampicillin, Sulfameth-
oxazole

S. Enterica Cattle faeces Invasion gene (InvA), Salmonella plasmid virulence (sop) Norfloxacin, Ampicillin, Azithromycin, Rifamycin, Penicillin, 
Tetracycline, Sulfamethoxazole

V. cholerae Cattle faeces V. cholerae (v. cholera), Accessory cholera enterotoxin (ace), 
cholera toxin (ctxA)

Azithromycin, Rifamycin, Penicillin, Ampicillin, Sulfameth-
oxazole, Tetracycline

S. aureus Milk Staphylococcal enterotoxin A (sea), nuclease (Nuc) Azithromycin, Rifamycin, Penicillin, Ampicillin, Tetracycline
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structure. The diffraction peaks of NiNPs can be observed 
at 2θ which is equal to 44.5° (1 1 1), 51.9° (2 0 0), and 76.5° 
(2 2 0), indicating the presence of an FCC crystal structure 
in the pure NiNPs.

The diffraction peaks observed exhibit a resemblance to 
the ones documented in the literature for NiNPs (Wu et al. 
2012, 2010; Eluri and Paul 2012; Balogun and Fayemi 2023), 
thereby confirming the successful formation of FCC pure 
NiNPs. Applying Scherrer’s equation (Monshi et al. 2012), 
12 nm and 18 nm were obtained as average crystallite size 
(L) for NiNPs and CoNPs, respectively, as given in Eq. 1.

(1)L =

0.89�

B cos θ

In this context, θ denotes the Bragg angle of the X-ray 
diffraction, λ designates the wavelength (0.15418  nm), 
and B stands for full-width half-maximum.

Transmission electron microscopy
The prepared nanoparticles’ sizes and shapes were iden-
tified utilizing transmission electron microscopy. Fig-
ure 3a, b displays the TEM images of CoNPs and NiNPs, 
respectively. The TEM image of CoNPs as depicted in 
Fig. 3a, displays a spherical particle shape with an irreg-
ular particle morphology. The average particle size is 
measured to be 17.4  nm, which closely aligns with the 
value calculated using Scherrer’s equation. The NiNPs, 
conversely, show a spherical particle configuration with 
a uniform particle morphology, possessing an average 

Fig. 1 EDX spectra of a CoNPs and b NiNPs

Fig. 2 XRD spectra of a CoNPs and b NiNPs
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particle size of 11.7  nm, akin to the outcome derived 
from the utilization of Scherrer’s equation for the NiNPs.

Ultraviolet–visible analysis
The UV–visible spectra for CoNPs and NiNPs are 
illustrated in Figure  4. Cobalt nanoparticles exhibit 
an absorption peak at 291 nm and abroad absorption 
peak from 385 to 510 nm (Figure  4a, b). The peaks can 
be assigned to the  O2−→  Co2+ and  O2− →  Co3+ charge 
transfer process (Adekunle et al. 2020). Similarly, NiNPs 
have an absorption peak at 293 nm. The absorption peaks 
that were observed bear similarities to those reported in 
the literature concerning NiNPs and CoNPs (Bathla and 
Pal 2018; Moumen et al. 2019; Balogun and Fayemi 2024).

Interestingly, the absorption peaks of the two nanopar-
ticles are close to each other.

Electrochemical studies
Cyclic voltammetry
All electrodes were electrochemically characterized 
using cyclic voltammetry CV to evaluate the nanoparti-
cles’ electron transport behaviors. As seen in the cyclic 
voltammograms (Fig. 5), all of the electrodes exhibited a 
pair of redox peaks in 5 mM  K3/K4(Fe(CN)6 produced in 
a solution of 0.1 M PBS at a pH of 7. The electrodes’ peak 
separations (Ep) values for GCE, GCE-Co, and GCE-
Ni were (0.39 V), (0.50 V), and (0.18 V), respectively, as 
seen in Table  2. The obtained Ep values are more than 

Fig. 3 TEM images of a CoNPs and b NiNPs

Fig. 4 UV–visible spectra of a CoNPs and b NiNPs
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the predicted 0.059  V for quick one-electron transpor-
tation, demonstrating a quasi-reversible mechanism at 
the electrode interfaces (Haque et  al. 2013; Zangeneh 
Kamali et  al. 2014). All electrode’s Ipa/Ipc values are 
nearly equal to one, as shown further in Table  2, which 
indicates reversibility at all the electrodes. As depicted in 
Fig.  5, GCE-Ni (35.6 μA) has a higher current response 
compared to GCE-Co (10.5 μA). The anodic peak cur-
rent (Ipa) obtained for the GCE-Ni is thrice compared 
to GCE-Co. This implies that among the electrodes, the 
GCE-Ni has the best current response. The electrochem-
ical properties of these electrodes were further assessed 
via EIS analysis.

Scan rate study
The scan rate study focused on analyzing the impact of 
altering the scan rate (ranging from 25 to 300  mV   s−1) 
on the electrochemical phenomena occurring at the sur-
face of the electrode. The experiment utilized a solution 
containing 5 mM of  K3/K4(Fe(CN)6 in a PBS solution of 
0.1  M. As depicted in Fig.  6a, b, increasing in the scan 
rate exhibits a direct correlation an increase in the peak 
currents. The relationship between the square root of the 
scan rate and the peak current displayed in Fig. 6x and y, 
gives a linearity, with the following regression Eqs. (2–5):

(2)
For CoNPs : Ipa = 0.0001v1/28.0928E − 6

(

R
2
= 0.9856

)

A diffusion-controlled process is therefore suggested 
for both GCE-Co and GCE-Ni based on the linear rela-
tionship existing between the peak currents and the scan 
rate’s square root.

Stability study
Both GCE-Co and GCE-Ni were subjected to stabil-
ity tests using CV with 50  mVs−1 for 20 repetitive scans 
in 5  mM of  K3/K4(Fe(CN)6 in a PBS solution of 0.1  M. 
According to Fig. 7a, b, a small current drop of 7.4% and 
4.5% was recorded for GCE-Co and GCE-Ni, respec-
tively, implying a high stability of both electrodes. Going 
by this result, GCE-Ni (95.5%) is more stable than GCE-
Co (92.6%).

Electrochemical impedance spectroscopy (EIS) study
An EIS investigation was conducted in 5  mM of  K3/
K4(Fe(CN)6 made in a PBS solution of 0.1  M (pH 7) to 
thoroughly examine the electron transport behaviors of 
these electrodes. The operating parameters include 0.3 V, 
Ag/AgCl, 3 M KCl (saturated), and 100 kHz–0.1 Hz. Fig-
ure 8 shows the Nyquist plots of the electrodes’ EIS fit-
ted data with an inset representing the equivalent circuit 
used to fit the EIS data. As seen in the electrochemical 
circuit, CPE designates constant phase element, W con-
notes Warburg impedance,  Rct represents charge transfer 
resistance, while  RS stands for solution resistance.

The fitted EIS data and individual Chi-square  (x2) val-
ues are provided in Table 3. The negative Chi-square val-
ues and the small % errors obtained, imply that the EIS 
data were accurately fitted. Table 3 presents the  Rct values 
of the electrodes as 1.39, 2.99, and 8.73 KΩ for GCE-Ni, 
GCE-Co, and GCE, respectively. It is observed that GCE-
Ni exhibits the lowest  Rct, therefore having a faster abil-
ity to transport electrons than Co-GCE. The observed 

(3)
Ipc = −6.5950E − 5v1/2 − 8.6212E − 6 R

2
= 0.9356

(4)
For NiNPs : Ipa = 2.7546E − 4v1/23.5663E − 5

(

R
2
= 0.9932

)

(5)
Ipc = −2.256E − 4v1/2 − 4.4876E − 5

(

R
2
= 0.9921

)

Fig. 5 Cyclic voltammograms of the electrodes in 5 mM  K3/
K4(Fe(CN)6 produced in 0.1 M of PBS at 25 mV  s−1

Table 2 Cyclic voltammetry data obtained for the electrodes

Electrode Ipa (μA) Ipc (μA) Ipa/Ipc Epa (V) Epc (V) ΔEp (V) E° (V)

GCE 25.0  − 30.0  − 0.83 0.40 0.01 0.39 0.20

GCE-Co 10.5  − 10.5  − 1.00 0.51 0.01 0.50 0.25

GCE-Ni 35.6  − 41.3  − 0.86 0.31 0.13 0.18 0.09
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decrease in  Rct values of the treated electrodes indicates 
successful coating of the nanoparticles on the bare elec-
trode. The EIS result exhibits a resemblance to the one 

obtained for CV except for CoNPs. The electrode n val-
ues (0.72–0.86) might also account for the ease at which 
ions diffuse between the solution and electrode.

Fig. 6 Cyclic voltammogram of a GCE-Co and b GCE-Ni from 10 to 100  mVs−1 and 25–300  mVs−1, respectively, 5 mM of  K3/K4(Fe(CN)6 in a PBS 
solution of 0.1 M, and (x) and (y) linear plots of peak current vs scan rate’s square root

Fig. 7 Cyclic voltammograms of a GCE-Co and b GCE-Ni with 20 scans at 25  mVs−1 in 5 mM of  K3/K4(Fe(CN)6 made in a PBS solution of 0.1 M
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The determination of the "knee" frequency (f°) of the 
electrodes was conducted in order to get deeper insights 
into the electronic characteristics of the electrodes. This 
frequency plays a crucial role in determining the power 
density, which refers to the supercapacitor’s charge and 
discharge capability. A supercapacitor with a greater f° 
has a quicker charge and discharge capacity, thus a better 
power density (Du and Pan 2006; Huang et al. 2007; Balo-
gun and Fayemi 2022). The following f° values 3.16, 2.00, 
and 1.68 Hz were recorded for the GCE-Ni, GCE‐Co, and 
GCE, respectively. This result indicates that GCE‐Co has 
a lower f° value compared to GCE‐Ni. However, the two 
modified electrodes (GCE‐Co and GCE‐Ni) are far better 
than the uncoated electrodes. The large f° value of GCE‐
Ni corroborates its high electron transport capability. In 
accordance with a study (Adekunle et al. 2013), the pre-
ponderance of commercially accessible supercapacitors, 
notably those designed for higher power applications, 
run at frequencies below 1 Hz.

Antibacterial study
Antimicrobial activities of nickel and cobalt nanoparticles
In this study, both NiNPs and CoNPs displayed antibac-
terial properties against the E. coli O157, E. coli O177, S. 
enterica, S. aureus, and V. cholerae tested (Fig. 9). Similar 

antibacterial activities have been reported by several 
researchers for NPs (Abbas and Aadim 2022; Ahghari 
et  al. 2020; Bensy et  al. 2022). Ahghari et  al. (Ahghari 
et  al. 2020) reported antibacterial activities of NiNPs 
against Staphylococcus aureus and Escherichia coli. Also, 
study by Abass et  al. (Abass et  al. 2021) indicates that 
NPs had bactericidal activity against multidrug-resistant 
bacteria.

Nanoparticles minimum inhibitory concentration (MIC)
The (MIC) of NPs against tested bacterial pathogens var-
ies. It was observed that the NiNPs had better inhibitory 
activities against E. coli O157, E. coli O177, S. enterica, 
S. aureus, and V. cholerae, with MIC values of 61.5, 61.5, 
125, 61.5, and 125 µg/mL compared to CoNPs MIC val-
ues of 125, 125, 250, 61.5, and 125  µg/mL, respectively. 
Both NiNPs and CoNPs show lower inhibitory concen-
tration value (61.5 µg/mL) against V. cholerae (Table 4). 
In contrast, NiNPs and CoNPs show higher inhibitory 
concentration value (125 and 250  µg/mL) against S. 
enterica. The variation in antimicrobial activities of the 
NPs might be explained from several parameters includ-
ing size, charge, chemical makeup, and agglomeration 
state of the NPs (Abolarinwa et al. 2022).

Minimum bactericidal concentration of the nanoparticles
In this study, NiNPs had better bactericidal activities 
against E. coli O157, E. coli O177, S. enterica, S. aureus, 
and V. cholerae tested compared to CoNPs. The MBC 
values of NiNPs against E. coli O157, E. coli O177, S. 
enterica, S. aureus, and V. cholerae were 500, 250, 250, 
125, and 125  µg/mL, respectively (Fig.  10). In con-
trast, CoNPs had MBC values of 500, 500, 250, 250, and 
250 µg/mL against E. coli O157, E. coli O177, S. enterica, 
S. aureus, and V. cholerae, respectively (Fig. 11).

Conclusion
In this study, we synthesized CoNPs and NiNPs via a 
chemical reduction approach and characterized them 
using FTIR, TEM, EDX, and XRD techniques. The result 
from XRD and TEM analysis revealed that the NiNPs 
was smaller (12 nm) in size compared to CoNPs (18 nm). 
The electrochemical properties of the nanoparticles were 
evaluated using CV and EIS analysis, demonstrating the 

Fig. 8 Nyquist plots of the electrodes in 5 mM of  K3/K4(Fe(CN)6 made 
in a PBS solution of 0.1 M (pH 7), and inset represents the equivalent 
circuit employed to fit the obtained EIS data

Table 3 Overview of the EIS results

Electrode Rct (Ω) Rs (Ω) W (F) CPE (μF) N X2 f°

Impedance Data (% errors in bracket)

GCE 8.73 (5.31) 110 (3.78) 226 (1.84) 3.80 (16.7) 0.80 (1.26) 0.555 1.68

GCE-Co 2.99 (2.02) 349 (1.59) 995 (10.9) 2.07 (10.1) 0.86 (1.59) 0.204 2.00

GCE-Ni 1.39 (3.43) 301 (2.03) 524 (4.46) 6.70 (16.3) 0.72 (2.91) 0.215 3.16
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superiority of GCE-Ni with a higher current response of 
35.6 μA over to GCE-Co (10.5 μA). The EIS studies indi-
cated that GCE-Ni (1.39 KΩ) has superior electron trans-
port capability compared to GCE-Co (2.99 KΩ) due to its 
lower Rct values. Furthermore, the power density of the 

synthesized nanoparticles was determined based on their 
"knee" frequency (f°) values. The GCE-Ni (3.16 Hz) exhib-
ited a greater f° value compared to GCE-Co (2.00  Hz). 
Interestingly, both NiNPs and CoNPs possessed signifi-
cant antibacterial activities against E. coli O157, E. coli 
O177, S. enterica, S. aureus, and V. cholerae, possibly 
due to their size, electrical, and optical properties. Here, 
NiNPs displayed a higher antibacterial potential com-
pared to CoNPs. Its smaller particle size and faster elec-
tron transport significantly influenced its performance 
among other properties by providing a larger specific 
surface area, an increased bacterial cell membrane per-
meability, and a higher antibacterial activity. Lastly, this 
research sheds light on the synthesis, characterization, 
and antibacterial properties of CoNPs and NiNPs, which 
can be used to generate novel antimicrobial drugs.

Fig. 9 Antibacterial activities of CoNPs and NiNPs against the tested bacteria pathogens

Table 4 The minimum inhibitory concentration of NiNPs and 
CoNPs against bacteria isolates

Bacteria NiNPs CoNPs

Minimum inhibitory concentration of NPs (̫µg/mL)

E. coli O156 61.5 125

E. coli O177 61.5 125

S. Enterica 125 250

V. cholerae 61.5 61.5

S. aureus 125 250
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Fig. 10 The minimum bactericidal concentration exhibited by NiNPs against bacteria isolates

Fig. 11 The minimum bactericidal concentration exhibited by CoNPs against bacteria isolates
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