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Abstract 

The measurement of metals in solution is usually performed using inductive coupled plasma hyphenated tech-
niques or atomic absorption. Although very sensitive and accurate, these analytical techniques are quite expensive 
and do not allow field measurements. The present work takes advantage of energy-dispersive X-ray fluorescence (ED-
XRF) ease-of-use features to determine the concentration of rare earth elements (Y, Pr, Nd, Eu) and others (S, Fe, Ni, 
Cu, Zn) in aqueous solutions, after appropriate sample treatment. The approach turned out to be a reliable and very 
convenient procedure for field analysis. The simplicity, speed and reliability of the methodology used combined 
with the possibility of simultaneous analysis and low cost of the method can be advantageous in industrial context. 
The approach relies on the suspension of the target solutions in a cellulose matrix that is further converted into a pel-
let for direct analysis. Calibration curves obtained by regression analysis at 5% significance are shown for a variety 
of elements (S, Fe, Ni, Cu, Zn, Y, Pr, Nd, Eu) with correlation coefficients between 0.9555 and 0.9980. Higher coefficients 
of variance were obtained for the calibration of S and Pr due to low sensitivity and the overlapping with the L lines 
of Nd, respectively. The performed calibrations were not affected by the presence of other analytes in the matrix. 
Results obtained showed that it is possible to use the proposed methodology to accurately quantify d and f block 
metals in aqueous solutions by ED-XRF after sequestering the chemical content into a cellulose powder matrix 
and further processing into a pellet.
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Graphical Abstract

Introduction
The aim of elemental analysis is to identify either the 
elements present within a compound or material or 
their concentration (Rodrigues et  al. 2019; Fiamegos 
and Calle Guntiñas 2018; Sysoev 2011). Proper metal 
determination is very important in a wide range of 
fields, including chemistry (Zhang et  al. 2007), chemi-
cal engineering (Kejonen et  al. 2018), cosmetics (de la 
Calle et  al. 2017), pharmacology (Pinheiro et  al. 2020; 
Rudovica et al. 2014), geology (El-Taher 2012; Maltsev 
et  al. 2021; Rowe et  al. 2012), archaeology (Williams 
et  al. 2020), numismatics (Gentelli 2021), medicine 
(Pozebon et al. 2017), zoology (Shinn et al. 2000), ecol-
ogy (Morales et al. 2020; Popp et al. 2010), agriculture 
(Blotevogel et  al. 2019; Maione et  al. 2022) and many 
others (Fiamegos et al. 2020; Perring and Andrey et al. 
2018; Perring et al. 2017).

Quantitative analysis of elements in solution is usu-
ally performed by inductive coupled plasma hyphen-
ated techniques (mass spectrometry or atomic emission 
spectroscopy, ICP-MS and ICP-AES, respectively) or 
atomic absorption spectroscopy (AAS). ICP-based 
techniques allow the determination of various elements 
simultaneously (or in series), have good precision, low 
detection limits and automation of the systems and are 
available commercially (Skoog et  al. 2017). The tech-
nique is a standard procedure for chemical composi-
tion analysis when aggressive conditions and hazardous 
chemicals must be used to overcome the difficulty to 
fully digest some inert matrices (Goswami et  al. 2021; 

Riding 2021), namely electronic waste (Önal and Binne-
mans 2019; Yin et al. 2018). Nevertheless, this approach 
has high running costs due to the required reagents and 
gases, auxiliary equipment and procedures (Jin 2016; 
Rodushkin et  al. 2010). Also, daily re-calibration is 
mandatory which further increases the time to obtain a 
result. Further, the instruments are not portable, which 
makes it impossible to carry out measurements in the 
field. AAS needs a light source for each element, has 
limited sensitivity and is not capable of simultaneous 
analysis (Skoog et  al. 2017). This technique, including 
AES (atomic emission spectroscopy) and AFS (atomic 
fluorescence spectroscopy), can only detect one ele-
ment at a time, making the analyses very time-con-
suming. Alternative techniques, such as laser-induced 
breakdown spectroscopy (LIBS) (Pathak et  al. 2012) 
and spark-induced breakdown spectroscopy (SIBS) 
(Pinjun et  al. 2023), that require a laser are also capa-
ble of analysing elemental composition in a similar way 
as XRF (X-ray fluorescence), being preferred for lighter 
elements.

Instead, portable energy-dispersive XRF (ED-XRF) 
portraits the cheapest spectrometer among X-ray fluo-
rescence techniques, maintaining multianalyte measure-
ment capability as well as accuracy (Skoog et  al. 2017). 
Therefore, the technique presents important advanta-
geous features to develop more practical and inexpen-
sive analytical methods. In addition, ED-XRF is suitable 
for some ppm to percentage (depending on the element), 
which suits its use to quantify elemental concentrations 
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in a wide range of compositions. Portable ED-XRF 
spectrometers are commercially available from various 
brands constituting an attractive factor for the industry. 
The technique has proved to be an accurate approach for 
fieldwork (Rowe et al. 2012; Kalnicky and Singhvi 2001) 
and industry (Kejonen et  al. 2018), namely to analyse 
solid samples. However, XRF measurements in liquids/
solutions require further operational attention to be 
considered for quantitative analysis. Specifically, special 
attention should be paid when: (a) using solvents that 
heavily scatter X-rays, which leads to low sensitivity and 
poor signal to background ratio (Marguí et al. 2014) and 
(b) the eventual generation of bubbles in liquid samples, 
that may lead to incomplete filling of the sample cup bot-
tom affecting measurement reproducibility. Also, there 
is a risk of leakage and consequent damage of the spec-
trometer and loss of sample (Moriyama and Morikawa 
2017).

Thus, having a simple methodology without the use 
of other materials, such as sample cups, would be very 
convenient from the operational point of view, espe-
cially in industrial environment where technological 
resources are usually scarce. Several efforts have been 
made in the past for the determination of elements in 
solution, by using some sort of matrix to accommodate 
the liquid sample, for instance, the simultaneous deter-
mination of scandium (III), yttrium (III) and lanthanoid 
(III) ions from minerals by adding the solution to a spe-
cial resin (Moriyasu et  al. 1991), the analysis of total 
chromium from dust by adding the solution to cellulose 
acetate filters (Hurst 1996), or the determination of cop-
per and iron from gasoline using cellulose paper filter 
(Teixeira et  al. 2007). However, these methods usually 
need mechanical stirring to ensure sample homogene-
ity, whereas the reduced thickness of the filter has limited 
adsorption capacity.

Some more complex methodologies have been 
reported, namely using freeze drying, precipitation of 
metals, electrodeposition or impregnated membranes 
(Marguí et  al. 2010). A few publications also report the 
addition of a thickening agent such as gelatine, sucrose 
or icosane to transform the solution into a “quasi-solid 
specimen” under vacuum atmosphere (García-Floren-
tino et al. 2017; Marguí et al. 2010; Teixeira et al. 2007). 
Despite the interest, these methods are complicated to 
implement, expensive and difficult to ensure homoge-
neity of the sample. Further, none of these methods has 
been used for rare earth elements (REE) analysis. In fact, 
the analysis of REE in solid matrices is not commonly 
performed, because of lack of proper calibrations. Just 
more recently, research regarding WEEE (Figueiredo 
et  al. 2024) and geological materials (Akbulut 2014; 
Rowe et  al. 2012) addressed these potentially useful 

methodologies. REE has been defined by the EU as criti-
cal materials (European Commission 2018; Binnemans 
et al. 2013). Recycling of REE-rich wastes is very impor-
tant to accomplish the objectives of circular economy 
(Ray and Mishra 2023). NdFeB magnets and phosphors 
have been appointed as important REE-rich components 
targets (Jha et al. 2016).

In this work, a simple methodology was developed and 
tested to allow performing elemental analysis on liquid 
samples, namely containing REE, among others, using a 
portable ED-XRF spectrometer.

Briefly, the proposed methodology includes: (i) pipet-
ting the liquid solution over cellulose powder, (ii) addi-
tion of ethanol and homogenisation, (iii) evaporation and 
(iv) cold pressing. This simple pretreatment assures sam-
ple homogeneity by creating sufficient volume that can 
be manually stirred. Cellulose, as a transparent material 
to X-rays, was used as support to sorb the target metal 
ions. The adopted procedure reduces the concentration 
of metals in the solid matrix, which decreases the sig-
nificance of X-ray matrix effects and thus reduces the 
necessary number of standards to have a precise and 
linear calibration (Kalnicky and Singhvi 2001). Ethanol 
was added to ease homogenization and reduce drying 
time. Further, the methodology is low cost, especially 
when compared with other reported methods, and, more 
importantly, is compatible with fieldwork since it can 
produce accurate results without complex analysis sys-
tems that use, for instance, vacuum or helium purges.

Materials and methods
Materials
Ammonium sulphate ((NH4)2SO4, 99%, Ph. Eur, PA-
ACS-ISO) was purchased from Panreac. Microcrystalline 
cellulose was purchased from Acros. Yttrium nitrate hex-
ahydrate (Y(NO3)3·6H2O, 99.8% trace metals basis), pra-
seodymium nitrate hexahydrate (Pr(NO3)3·6H2O, 99.9%), 
neodymium nitrate hexahydrate (Nd(NO3)3·6H2O, 
99.9%), europium nitrate pentahydrate (Eu(NO3)3·5H2O, 
99.9% trace metals basis) and zinc nitrate hexahydrate 
(Zn(NO3)2·6H2O, 99%,) were purchased from Aldrich. 
Copper(II) nitrate hemipentahydrate (Cu(NO3)2·2.5H2O, 
98%) was purchased from Alfa Aesar. Nickel(II) nitrate 
hexahydrate (Ni(NO3)2·6H2O, 98%, extrapure) was pur-
chased from Scharlau. Ethanol (absolute, 99.5%, for 
HPLC) was purchased from Fisher.

A Bruker S1 Titan 600 portable (handheld) ED-XRF 
spectrometer was used to perform the present work, 
containing a 50 kV X-ray tube with a Rh anode as excita-
tion source and a silicon drift detector (SDD) protected 
against puncturing by a grid shield. The equipment uses 
an incidence angle at 45º and a take-off angle at 65º. The 
collimation of the incident X-ray beam makes the spot 
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size 5 mm wide and the region of analysis has 19  mm2. 
All calibration work was developed using Spectra EDX 
(EasyCal™ version 2.4.222 software by Bruker) aided by 
Bruker Instrument Tools version 1.6.0.110 for visualiza-
tion of the spectra.

Calibration solutions
Three sets of chemical elements were chosen to validate 
the proposed methodology, taking into consideration rel-
evant analytical field interest: set (A) Cu, Ni, Zn and Y; 
set (B) Fe, Pr and Nd; and set (C) S, Zn, Y and Eu. Set A 
includes common elements in industrial separation pro-
cesses (Parhi and Sarangi 2018; Fontàs et  al. 2009; Shah 
and Devi 1998) and often needed in equipment calibra-
tion procedures (Ghasemi et  al. 2003; Sokolova et  al. 
1986). Sets B and C focus on critical REE from WEEE, 
chosen on the context of the worldwide critical materi-
als emergency. In particular, the recovery of Nd and Pr in 
a Fe-rich medium from spent neodymium–iron–boron 
(NdFeB) magnets (Gergoric et al. 2019; Zhou et al. 2019; 
Abrahami et al. 2015) and the recovery of Y and Eu from 
phosphors obtained from spent cathode ray tube (CRT) 
monitors in which the most abundant elements also 
include S and Zn (Önal et  al. 2020 and 2019; Lin et  al. 
2018). For further information regarding concentration 
ranges of elements, please check a more specific reference 
(Figueiredo et al 2024). The chosen working ranges took 
into consideration the sensitivity of the equipment used as 
well as the concentration of the metals in typical leaching 
solutions (Pinho et al. 2021; Önal et  al. 2017; Miskufova 

et  al. 2018). All salts were readily dissolvable, and their 
counteranions have minimum X-ray absorption.

A 10  mL aqueous stock solution was prepared for 
each chemical element as follows: (a) Ni, Cu, Zn and Y 
at 500 mM; Ni, Zn and Y as nitrate hexahydrate and Cu 
as nitrate hemipentahydrate); (b) 400 mM of Fe as nitrate 
nonahydrate; 10 mM Pr and 100 mM Nd both as nitrate 
hexahydrate; and (c) 94 mM of S as ammonium sulphate; 
61  mM Zn as nitrate hexahydrate; 34  mM Y as nitrate 
hexahydrate; and 2 mM Eu as nitrate pentahydrate. Disc 
pellets (Sect.  “Sample preparation”) were prepared by 
adding suitable volumes of each one of the appropri-
ate stock solutions. The volumes of standard solution 
were chosen randomly to minimize statistical error. The 
equivalent concentrations of each chemical element in 
the stock solution, for each one of the three sets, are pre-
sented in Table  1. For each set, standards with a single 
element were also prepared to evaluate possible matrix 
influences (bottom rows in Table 1).

Sample preparation
Disc pellets were prepared using cellulose powder 
impregnated with known amounts of chemical elements 
dissolved in aqueous solutions in the presence of ethanol. 
Disc pellets with 13  mm diameter and 2–3  mm thick-
ness were prepared by using the following procedure. In 
a glass beaker containing 500  mg of cellulose, approxi-
mately 5 mL of ethanol was added, ensuring the cellulose 
was completely submerged, and then the volumes of the 
solutions were pipetted. Ethanol was chosen because its 
low boiling point facilitates subsequent evaporation, does 

Table 1 Equivalent molar concentration (mM) of each chemical element present in each set (Set A, Set B or Set C). The concentrations 
in each line refer to the solutions used to prepare each calibration disc pellet standard

Set A Set B Set C

Ni Cu Zn Y Fe Pr Nd S Zn Y Eu

12.05 73.70 88.25 99.65 12.40 0.22 2.30 6.240 4.841 2.895 0.025

39.15 69.70 9.30 75.70 61.09 1.04 4.13 9.138 2.532 3.316 0.154

87.50 1.70 60.80 71.85 7.32 0.34 3.20 2.394 2.617 2.677 0.076

49.25 99.15 23.80 5.45 31.76 0.10 1.13 2.764 5.727 1.190 0.190

43.75 19.25 3.45 1.00 30.84 0.44 1.97 3.947 3.347 3.301 0.049

18.20 99.90 20.25 69.00 56.70 0.16 5.85 3.077 1.526 0.592 0.020

73.25 63.40 5.05 6.65 52.29 0.51 3.46 4.899 1.237 0.660 0.065

91.15 74.50 56.05 80.40 50.32 0.79 5.58 1.701 5.920 1.738 0.148

51.70 47.10 25.35 22.65 23.69 0.64 7.51 7.535 1.781 1.443 0.126

74.60 95.40 66.50 40.15 37.81 0.21 2.28 6.240 4.841 2.895 0.025

50.00 – – – 63.02 – – 9.407 – – –

– 50.00 – – – 1.06 – – 6.162 – –

– – 50.00 – – – 7.61 – – 3.379 –

– – – 50.00 – – – – – – 0.199
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not react with the metals under study and is generally 
recognized as safe (GRAS). The ethanolic mixture was 
shaken for 5 min using an orbital agitator and left to dry 
at 50 °C in an oven with air circulation. The dried powder 
was homogenized using a glass rod prior to pelletizing. 
Pellets were prepared using a hydraulic press (7000  kgf) 
for 1 min using a 13-mm die set from Aldrich, followed 
by a slow pressure relief.

XRF measurement
A Bruker S1 Titan 600 ED-XRF spectrometer was posi-
tioned vertically over a laboratory bench, with the help 
of an appropriate support making available the measure-
ment area on top of the equipment, where the primary 
beam points upwards (Fig. 1) and a shield box stops the 
X-rays from escaping.

Prepared disc pellets were placed on top of the equip-
ment and measurements performed according with 
equipment instructions either using manufacturer’s pre-
installed calibration Geomining with two phases for set 
A, or the new user-developed calibrations for sets B and 
C (see Section “XRF specific calibrations”).

XRF specific calibrations
Since the XRF equipment used had no calibrations for lan-
thanoids, as required for measurements in sets B and C, 
new calibrations were developed and installed on the port-
able XRF spectrometer, as described elsewhere (Figueiredo 
et al. 2024). Briefly, calibrations were developed using the 

EasyCal™ software, version 2.4.222, part of the  Bruker® 
Toolbox, version 1.6.0.110. Spectra obtained using differ-
ent operating conditions (tube potential, current intensity, 
counting time, use of filters) were evaluated and the figure 
of merit (FOM, Eq. 1) determined. FOM was adapted from 
the theory of X-ray fluorescence (Jenkins and Vries 1973) 
and used elsewhere for similar purposes (Potts et al. 1986),

in which the Ip refers to the gross intensity at the emis-
sion energy of the analyte, and Ibkg refers to the intensity 
of the respective background. FOM was calculated for 
two key-elements, in different ranges of concentration 
(Y and Eu for the CRT phosphors, and Pr and Nd for 
NdFeB magnets). The optimal operating conditions were 
determined by finding maximum FOM for both elements 
(Eq.  1), while being aware that different elements may 
have different optimal conditions of excitation and, thus, 
the best conditions for one may not suit the other. The Kα 
line was used to analyse sulphur and the transition met-
als, while Lα was used to analyse the lanthanoids.

After introducing the necessary input on the software, 
the spectra of the disc pellets standards were recorded. 
For the chosen X-ray line, the most appropriate statisti-
cal parameters and corrections (namely matrix effects and 
overlaps of lines) were chosen in order to minimize the 
error of the regression model obtained by the software. 
The development of the spectrometer calibration model for 
the set B took into consideration the following overlaps of 
peaks: (i) Lα of Pr over Nd Lα; (ii) Lα of Nd over Pr Lα; and 
(iii) Kα of Fe over Nd Lγ.

For each analyte, a pair of alpha coefficients was obtained 
by regression analysis using the Bruker software. For the 
development of the spectrometer calibration model for set 
C, the overlap of Kα of S with the Rh LI line (Rayleigh scat-
tering) was considered. Alpha coefficients were obtained by 
regression analysis using the software: (i) the element Zn 
in the calibration for Y and (ii) the elements Zn and Y in 
the calibration for S. For Zn and Eu, no alpha corrections 
were computed. At this point, plots of the “compositions” 
obtained by XRF as a function of the chemical composition 
of the standards were obtained (see Additional file 1: Figs. 
S1 and S2 from Online Resource).

Regression analysis
Calibration curves relating the molarity of the solutions 
and the respective XRF measurements were obtained using 
linear regression by the least squares method with null 
y-intercept on Microsoft  Excel® (Analysis Tool Pack add-
in). The curves fit Eq. 2,

(1)FOM = IP − Ibkg

(2)C = βω,

Fig. 1 The Bruker S1 Titan 600 ED-XRF spectrometer positioned 
vertically over the laboratory bench, with the help of an appropriate 
support. The shield box is rotated prior to analysis to avoid escape 
of X-rays
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with C being the molar concentration in the solution, ω 
the respective measured concentration in the disc pellet 
of one analyte and β the slope estimated by the method. 
Its standard error at 95% confidence δβ was also esti-
mated by the method and multiplied by the correspond-
ing t-Student parameter t. The 95% confidence interval 
(β ± δβt)ω for the regression was plotted along with the 
linear fit to the experimental data. The coefficients of var-
iance were computed according to Eq. 3,

Results
For set A, the XRF measurement composition (%) of each 
disc pellet obtained with the spectrometer (for every 
chosen element) was plotted against the molar concen-
tration of the metal aqueous solutions to determine the 
respective correlation (Fig.  2), where dashed lines rep-
resent the 95% confidence interval. The composition 

(3)CV =
δβ

β
.

was obtained by using the Geomining calibration with 
the Oxides Method with two phases present in the XRF 
equipment used. The last phase of this method, which 
applies a smaller potential and is preferred for lighter ele-
ments, did not improve the results and increased noise, 
therefore being dismissed.

For set B, the optimal conditions for analysis were 
achieved when using 20 kV and 35 µA for 60 s. Calibra-
tion curves with each data set and a 95% confidence level 
range are shown in Fig. 3, for Fe, Pr and Nd. In Additional 
file 1: Fig. S3 from Online Resource, it is observed that the 
Pr Lα line is very close to Nd Lα line, and its maximum 
cannot be observed distinctly in the spectra of some of 
the standards, therefore making the quantification of pra-
seodymium, which is presented in only small amounts in 
the pellets (less than 0.3% wt.), more challenging.

For set C, the optimal conditions for analysis were 
achieved when using 30  kV and 40 µA for 120  s, while 
using a 25 µm Ti filter and a 300 µm Al filter.

Calibration curves with each data set and a 95% con-
fidence level range are shown in Fig. 4 for S, Zn, Y and 

Fig. 2 Correlations obtained between metal concentration in solution and XRF measurements of the pellet, within set A elements (Ni, Cu, Zn 
and Y). The regression lines follow the equations: a: Ni–y/mM = (34.5 ± 1.5)x %, R2 = 0.9777, CV = 4%; b: Cu–y/mM = (10.18 ± 0.45)x %, R2 = 0.9756, 
CV = 4%; c: Zn–y/mM = (9.77 ± 0.25)x %, R2 = 0.9918 and a CV = 3%; d: Y–y/mM = (8.91 ± 0.28)x, R2 = 0.9875, CV = 3%. The black diamond in each plot 
represents the standard that contains only the element of the respective curve
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Eu. Results for sulphur (Fig.  4a) revealed slightly higher 
statistical dispersion (coefficient of variance 6%). In 
fact, sulphur is a light element, possessing therefore a 
lower sensitivity in ED-XRF, and can also easily be hid-
den by scattered continuous bremsstrahlung radiation. 
It is noteworthy that standards spectra from this matrix 
(Additional file 1: Fig. S4 from Online Resource) exhibit 
a higher background than the other sets presented, sug-
gesting that the lower total metal content increases the 
probability of scattering of the incoming X-rays.

Discussion
Good correlations were found between the molarity of 
the elements in solution and the concentration obtained 
by using the portable ED-XRF over prepared discs. The 
lowest correlation coefficient (0.9555) and highest coef-
ficient of variance (6%) were found for sulphur in set C, 
and all other are above 0.97 and below 4%. This minor 
discrepancy arises from the fact that sulphur has low sen-
sitivity in XRF as the measured intensity at its Kα energy 

is significantly affected by background fluctuations. The 
Kα of sulphur was not easily observed in the spectra of 
most standards of set C (Additional file  1: Fig. S4 from 
Online Resource). The occurrence of problems for the 
accurate quantification of sulphur in light matrixes was 
previously reported (Declercq et  al. 2019) as well as for 
other light elements such as Al and Si in oils (Pedrozo-
Peñafiel et al. 2019) and in ores (Zhou et al. 2020). In fact, 
this is quite difficult to achieve as this is a very insensi-
tive element, and it is difficult to correct the background 
contribution within the limits of the tools provided by 
software.

In set B, it is observed in the spectra of the stand-
ards that the Lα peak of praseodymium is not fully 
separated from its neodymium counterpart, rather 
appearing as a “shoulder” (Additional file 1: Fig. S3 from 
Online Resource), most likely because the pellets pra-
seodymium content is much smaller than neodymium, 
contributing as well to increase the standard error of 
praseodymium calibration curve obtained by linear 

Fig. 3 Correlations obtained between metal concentration in solution and XRF measurements of the pellet, within set B elements (Fe, Pr and Nd). 
The regression lines follow the equations: a: Fe–y/mM = (9.95 ± 0.13)x %, R2 = 0.9980, CV = 1%; b: Pr–y/mM = (3.71 ± 0.16)x %, R2 = 0.9772, CV = 4%; c: 
Nd–y/mM = (3.676 ± 0.068)x %, R2 = 0.9960 and a CV = 2%. The black diamond in each plot represents the standard that contains only the element 
of the respective curve
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regression, comparing with the other elements, despite 
the good correlation found (R2 = 0.9772, coefficient of 
variance = 4%, Fig. 3).

No strong matrix effects between elements were 
expected since the pressed pellets have low concen-
trations of the chosen elements and cellulose does not 
produce fluorescence. Nevertheless, interferences could 
occur among elements that possess an absorption edge 
very close to the emission energy of another element. 
To assess whether this effect could occur in each set, 
disc samples were prepared with only one of the stud-
ied elements. Results showed that in those pellets no 
such effects were observed. Although in some figures 
the diamond points were located outside their 95% 
confident interval, those points didn’t fall always to the 
same side of the interval, suggesting a statistical disper-
sion of the experimental data. In addition, in the case of 
Y, from the two regression curves obtained at different 
concentrations, in only one of them the diamond point 
is outside, suggesting that samples with only one ele-
ment have a similar behaviour when compared with the 
corresponding set, reinforcing that the matrix effects 

are absent or minimal, as expected. Notwithstanding, 
matrix effects were still evaluated and some alpha coef-
ficients were introduced in the spectrometer calibra-
tion (according to section  “XRF specific calibrations”) 
to correct any possible effects.

Intense background and Rayleigh scattering of the 
L lines of Rh were observed, namely in set C spec-
tra (Additional file  1: Fig. S4 from Online Resource) 
as small concentrations of metals dispersed in a 
light matrix induce X-ray scattering, instead of good 
absorption.

The results obtained show that the two calibration 
curves for yttrium and zinc have different slopes in differ-
ent sets. A slightly higher slope was estimated for higher 
concentrations of these elements, suggesting that for 
large ranges of composition the relation between the true 
value of composition in solution and the measure by ED-
XRF is not linear and has a smooth curvature.

Taking into consideration the low volumes of samples 
used in this work, it is envisioned that small volumes 
(around 1 ml) are predictably enough to produce speci-
mens to be analysed, which can constitute an advantage 

Fig. 4 Correlations obtained between metal concentration in solution and XRF measurements of the pellet, within set C elements (S, Zn, Y, Eu). 
The regression lines follow the equations: a: S–y/mM = (14.14 ± 0.88)x %, R2 = 0.9555, CV = 6%; b: Zn–y/mM = (8.14 ± 0.15)x %, R2 = 0.9961, CV = 2%; c: 
Y–y/mM = (5.93 ± 0.17)x %, R2 = 0.9905 and a CV = 3%; d: Eu–y/mM = (3.54 ± 0.11)x, R2 = 0.9895, CV = 3%. The black diamond in each plot represents 
the standard that contains only the element of the respective curve
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of this methodology when a limited sample size is availa-
ble. Nevertheless, if very concentrated solutions are to be 
analysed, different volumes may have to be used depend-
ing on the leachate sample levels.

The ED-XRF provides a robust analysis that can be 
employed as a quick or routine analytical methodology 
for liquid samples using a simple accessible pre-treatment 
and can be an alternative to more commonly employed 
spectroscopic analyses for solutions.

Conclusions
A simple methodology using a portable ED-XRF 
spectrometer to determine metal concentrations in 
solutions was presented. The equipment used is sig-
nificantly cheaper, and the developed methodology has 
almost no operational costs when compared to other 
analytical techniques. Also, it is fast, does not require 
the use of vacuum or helium purges, is easily accessi-
ble, uses just common laboratory glassware and com-
mon innocuous chemicals and allows multi-elemental 
analysis in a row. The proposed simple methodology 
is therefore very convenient to analyse liquid samples, 
for instance, in industry and field works, where fast 
and easy to operate analyses are a necessary asset. The 
low volume required is an advantage if only a small 
sample is available. Although for higher concentra-
tions the technique is more sensitive, this gain is small. 
Our analytical approach provided reliable and accu-
rate results even when the emission peaks were not 
clearly observed in the spectra (Pr and S). Good cor-
relations were obtained with a coefficient of deter-
mination not lower than 0.9555 and a coefficient of 
variance not above 6% for the three sets of chemical 
elements, including transition metals (Fe, Ni, Cu, Zn, 
Y), lanthanoids (Pr, Nd, Eu) and a non-metal (S). The 
methodology can be used for any sets of chemical ele-
ments detected by ED-XRF. However, in laboratories or 
industries where ED-XRF is not available or when, for 
instance, the analysis of very light elements is needed, 
the methodology may be used analogously with other 
compatible analytical techniques, such as LIBS and ion 
beam analysis, provided that appropriate calibrations 
are previously performed.
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