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Abstract 

Single-cell multi-omics technology has catalyzed a transformative shift in contemporary cell biology, illuminat-
ing the nuanced relationship between genotype and phenotype. This paradigm shift hinges on the understand-
ing that while genomic structures remain uniform across cells within an organism, the expression patterns dictate 
physiological traits. Leveraging high throughput sequencing, single-cell RNA sequencing (scRNA-seq) has emerged 
as a powerful tool, enabling comprehensive transcriptomic analysis at unprecedented resolution. This paper navi-
gates through a landscape of dimensionality reduction techniques essential for distilling meaningful insights 
from the scRNA-seq datasets. Notably, while foundational, Principal Component Analysis may fall short of captur-
ing the intricacies of diverse cell types. In response, nonlinear techniques have garnered traction, offering a more 
nuanced portrayal of cellular relationships. Among these, Pairwise Controlled Manifold Approximation Projection 
(PaCMAP) stands out for its capacity to preserve local and global structures. We present an augmented iteration, 
Compactness Preservation Pairwise Controlled Manifold Approximation Projection (CP-PaCMAP), a novel advance-
ment for scRNA-seq data visualization. Employing benchmark datasets from critical human organs, we demonstrate 
the superior efficacy of CP-PaCMAP in preserving compactness, offering a pivotal breakthrough for enhanced classifi-
cation and clustering in scRNA-seq analysis. A comprehensive suite of metrics, including Trustworthiness, Continuity, 
Mathew Correlation Coefficient, and Mantel test, collectively validate the fidelity and utility of proposed and existing 
techniques. These metrics provide a multi-dimensional evaluation, elucidating the performance of CP-PaCMAP com-
pared to other dimensionality reduction techniques.

Keywords Dimensionality reduction, Compactness preservation, Machine learning, Single-cell RNA sequencing, 
scRNA-seq data visualization, Single cell data analysis

Introduction
It is a widely accepted and proven scientific fact that cells 
are the fundamental building blocks of all living organ-
isms. They play a vital role in the structure and function 
of these organisms. In recent years, there has been a sig-
nificant shift in cell biology research due to the develop-
ment of single-cell multi-omics technology. Despite the 

fact that the genome structure of every cell in a given 
individual is essentially the same, the expression pattern 
of this genome determines the cell’s physiological char-
acteristics. The diverse range of physical traits observed 
in different organisms is a result of both the genotype 
and the expression pattern of the genome, and devia-
tions from the norm in these patterns can lead to various 
diseases. To fully understand the relationship between 
genotype and phenotype, it is necessary to analyze tran-
scriptomic information at a high resolution, and advances 
in high throughput sequencing technologies have made 
it possible to do so at the level of single cell (Nayak and 
Hasija 2021; Battenberg et al. 2022).
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Recent single-cell RNA sequencing (scRNA-seq) tech-
nologies can create data for multitudes of cells in a sin-
gle experiment, a portion of which are open to the public 
over the internet. This surge in throughput has allowed 
researchers to use scRNA-seq for a wide variety of tissues 
and even whole organisms (Ghazanfar et al. 2016). As the 
technology advances, it is anticipated that scRNA-seq 
will become more precise, dependable, and cost-effec-
tive per cell, making it possible for a vast array of stud-
ies. scRNA-seq has unleashed a plethora of opportunities 
in biomedical research; however, we have only touched a 
small portion of the possibilities of such a huge and var-
ied dataset (Wang et al. 2021). scRNA-seq transcriptome 
profiles have opened up the possibility for recognition 
of unusual and peculiar cell types in organs or tissues, 
resolving the fate of a cell (Grün et  al. 2015), cell line-
age connections in early stages of development (Petro-
poulos et al. 2016), differentiating normal and abnormal 
cells (Shalek et  al. 2013), antigen sensitivity and speci-
ficity of immune cells (Tu et al. 2019), deducing cellular 
trajectory (Miragaia et  al. 2019), finding regulatory sig-
natures in malignant tumors (Granja et al. 2019), decod-
ing immune repertoire for contagious diseases (Yao et al. 
2019), knowing and interpreting tumor heterogeneity 
(Wagner et al. 2019), enlightening the pathway for drug 
resistance and various stages of cancer treatment includ-
ing relapse of tumors (Shaffer et al. 2017). More applica-
tions are being uncovered as a result of improved analysis 
techniques.

The data collected from hundreds of thousands of cells, 
each with numerous genes, results in a dataset with a 
large number of data points and high dimensionality. 
While this vast amount of data has the potential to reveal 
valuable insights, extracting useful information from it 
can be difficult (Babjac et al. 2022). To address this chal-
lenge, Dimensionality Reduction (DR) techniques have 
been developed to simplify the data and create lower-
dimensional representations that are easier to understand 
and interpret. DR methods involve reconstructing the 
underlying distributions of the data in the "gene space" 
and providing a more intuitive way to analyze single-cell 
data. Researchers are seeking ways to represent high-
dimensional scRNA-seq datasets in a Low Dimensional 
Space (LDS) while preserving patient similarities and dif-
ferences (Xiang et al. 2021).

The goal is to create an LDS representation that cap-
tures the relationships between patients, such that those 
with the same disease have similar patterns of expression. 
DR techniques are used to map High Dimensional Space 
(HDS) data to a 2-dimensional (2D) or 3-dimensional 
(3D) space, which makes it easier to visualize connections 
between data points that would be difficult or impos-
sible to identify in the HDS (Carter et  al. 2008; Yousuff 

and Babu 2022). The key principle of the DR approach is 
that it maintains the proximity of similar data points and 
keeps distant data points separated. Retention of local 
structure refers to maintaining the proximity of elements 
in the HDS in the LDS. In broader terms, the local struc-
ture is maintained when the neighboring elements in the 
HDS correspond to those in the LDS. On the other hand, 
preserving global structure implies maintaining relation-
ships between clusters and larger-scale structures (Heiser 
and Lau 2020).

Principal Component Analysis (PCA), a linear DR tech-
nique, is commonly used in unsupervised data reduction 
by identifying linear feature combinations that have the 
highest variance. However, linear DR approaches are not 
always reliable for scRNA-seq analysis as they may not 
fully capture the complexity of diverse cell types and can 
result in an inadequate representation of the data (Tsuy-
uzaki et  al. 2020). In contrast, nonlinear DR techniques 
have become popular for scRNA-seq data visualization 
because of their ability to identify both local and global 
patterns while avoiding coordinate overlap. These tech-
niques are particularly useful for scRNA-seq data, which 
is often highly diverse and has complex associations 
between cell types and states. Additionally, nonlinear 
DR techniques are more effective in reducing the dimen-
sionality of scRNA-seq data with many features per cell 
(Pierson and Yau 2015).

Several nonlinear dimensionality reduction algorithms 
have been proposed for visualizing and generating LDS 
for scRNA-seq data. Uniform Manifold Approximation 
and Projection (UMAP) (McInnes et al. 2018), t-distrib-
uted stochastic neighbor embedding (t-SNE) (Maaten 
and Hinton 2008), TriMap (Amid and Warmuth 2019), 
Potential of Heat-diffusion for Affinity-based Trajec-
tory Embedding (PHATE) (Moon et  al. 2019), and IVIS 
(Szubert et  al. 2019) are commonly used among these 
algorithms. Each of these methods has limitations; for 
example, t-SNE is sensitive to the perplexity hyperparam-
eter and may create clusters that are not real, t-SNE and 
UMAP are good at retaining local structures but have dif-
ficulty maintaining global structures. TriMap is a triplet 
model to reach the performance of UMAP and t-SNE, 
but it also has limitations; at times, it struggles with pre-
serving local structures. Additionally, it is not possible 
to regulate these techniques, such as t-SNE, UMAP, or 
TriMap, effortlessly from local to global structure reten-
tion through any apparent modification of parameters 
(Coenen et al. 2019; Wang et al. 2022). PHATE is also a 
recently proposed alternative approach, but it is sensitive 
to initialization values, and it is liable to serious defor-
mations when attempting to maintain pairwise associa-
tions or distances from HDS data in 2D or 3D (Moon 
et al. 2019). IVIS, on the other hand, uses Siamese neural 
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networks, which can lead to high computational cost, 
limited interpretability, confined ability to handle varia-
tions, limited scalability and the need for a large amount 
of labeled data for effective training (Chicco and Cart-
wright 2021).

Selecting which points to attract and which to repel is 
crucial in maintaining both local and global structures. 
Pairwise Controlled Manifold Approximation Projec-
tion (PaCMAP) is a recent nonlinear DR algorithm that 
claims to achieve this by using a unique loss function 
and graph components. PaCMAP is demonstrated on 
synthetic, benchmark and real-time datasets and it has 
been proven to preserve local and global structures. It 
is quite reliable in hyperparameter choices and exhibit 
considerably faster runtime compare to other DR algo-
rithms (Wang et al. 2022). This paper aims to present an 
augmented version of PaCMAP termed as Compactness 
Preservation Pairwise Controlled Manifold Approxima-
tion Projection (CP-PaCMAP) which can additionally 
preserve compactness property of HDS datapoints into 
LDS. CP-PaCMAP is remarkable in order to visualize 
scRNA-seq data. Further, the LDS obtained through CP-
PaCMAP can be effectively utilized for better classifica-
tion or clustering of scRNA-seq data.

Research gap
In spite of the vast potential inherent in scRNA-seq data, 
the colossal size and soaring dimensionality of these data-
sets introduce formidable hurdles. The quest for gleaning 
meaningful insights from such data has spurred the evo-
lution of dimensionality reduction (DR) techniques. DR 
methodologies strive to reshape the high-dimensional 
landscape of gene expression into a more manageable, 
lower-dimensional form, facilitating streamlined analy-
sis and visualization (Babjac et al. 2022). While Principal 
Component Analysis (PCA), a linear DR approach, has 
enjoyed widespread use, its applicability in scRNA-seq 
investigations is somewhat constrained, as it may fall 
short of encapsulating the full spectrum of cell diver-
sity (Tsuyuzaki et al. 2020). Consequently, nonlinear DR 
techniques have risen in prominence within the realm 
of scRNA-seq data, primarily due to their adeptness in 
unveiling both local and global patterns within data char-
acterized by intricate relationships among cell types and 
states (Pierson and Yau 2015).

Nonetheless, the prevailing nonlinear DR techniques, 
including UMAP, t-SNE, TriMap, PHATE, and IVIS, 
exhibit variable degrees of sensitivity to hyperparam-
eters and encounter obstacles in preserving both local 
and global data structures (McInnes et al. 2018; Maaten 
and Hinton 2008; Amid and Warmuth 2019; Moon et al. 
2019; Szubert et  al. 2019). The specific research gap 

targeted by this study comes to the forefront: the demand 
for an enhanced nonlinear DR methodology tailored for 
scRNA-seq data analysis. This method should exhibit 
unwavering proficiency in effectively capturing both local 
and global data structures while concurrently preserving 
compactness, offering a holistic solution to the challenges 
presented by high-dimensional single-cell transcriptom-
ics data.

Materials and methods
This section will discuss a comprehensive overview of 
the scRNA-seq datasets utilized in this study. We will 
also describe the preprocessing procedures carried out 
on the datasets to ensure the quality and reliability of the 
data. Finally, details about the proposed CP-PaCMAP 
approach are presented.

scRNA‑seq data collection and preprocessing
Benchmark scRNA-seq datasets belonging to three vital 
human organs, the pancreas, skeletal muscles, and heart, 
are gathered and used in this study and the dataset are 
available from https:// hembe rg- lab. github. io/ scRNA. seq. 
datas ets/. The human pancreas dataset consists of 16,382 
cells and 19,093 genes from 14 different classes of cells. 
The human skeletal muscle dataset contains 52,825 cells 
and 33,538 genes belonging to 8 unique categories of 
cells. A set of 38,929 cells and 27,420 genes categorized 
under 13 labels of cells of the human heart are present in 
the third dataset. Initially, all the datasets are subjected 
to a doublets removal process. Then, other preprocess-
ing techniques, such as filtering, quality control, and nor-
malization, are utilized to prepare the data for nonlinear 
DR and LDS visualization. All the preprocessing tasks are 
carried out in Python language using the Scanpy library 
(Wolf et al. 2018).

Doublets in scRNA-seq data indicate two separate cells 
combined by unexpected events during the sequencing 
procedure. In a droplet-based sequencing approach, this 
can occur if, for instance, two cells reside in the same 
droplet. Doublets can significantly influence the pro-
cessing of scRNA-seq data, leading to skewed results 
and inaccurate inferences. This is due to the fact that the 
combined gene expression readings of the doublets do 
not adequately represent the genuine gene expression of 
either individual cell (Weber et al. 2021). Therefore, iden-
tifying and eliminating doublets from single-cell data is 
essential before undertaking subsequent analysis. This 
ensures that the results of the study are based on relia-
ble and representative measurements of individual cells 
rather than on measurements of cells that have been arti-
ficially blended.

https://hemberg-lab.github.io/scRNA.seq.datasets/
https://hemberg-lab.github.io/scRNA.seq.datasets/
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Single-Cell Variational Inference (SCVI) is a method that 
can be used to model and analyze scRNA-seq data. SCVI 
is based on a variational autoencoder architecture consist-
ing of two main components: an encoder network and a 
decoder network. The encoder network maps each cell’s 
HDS gene expression data to an LDS, while the decoder 
network maps the LDS representation back to the actual 
HDS. The training process of SCVI involves minimiz-
ing a reconstruction loss, which measures the difference 
between the input data and the reconstructed data gen-
erated by the decoder network. In addition, SCVI uses a 
regularization term in the loss function to encourage the 
learned latent representation to be smooth and continu-
ous and to prevent overfitting to the training data (Gayoso 
et  al. 2022). We have incorporated SCVI to identify dou-
blets by calculating the reconstruction error of each cell in 
the data and setting a threshold based on this error. Cells 
with a high reconstruction error are considered doublets 
and can be removed from the data before further analysis. 
Table  1 displays the number of doublets identified from 
each dataset.

Filtering is a crucial preprocessing step in analyzing 
scRNA-seq data because it helps eliminate low-quality or 
undesirable cells and low-quality genes or irrelevant fea-
tures. This can enhance subsequent analysis and improve 
the precision of the results. Moreover, by deleting redun-
dant data points, filtering might lower the computing load 
of downstream analysis (McCarthy et al. 2017). A general 
filtering criterion for cells is given in Eq. 1, whereas filter-
ing criteria for each dataset with specific values are given 
in Table 1.

where C is the set of all cells in the dataset, C′ is the fil-
tered set of cells with at least X expressed genes, n(c) is 
the number of expressed genes in cell c , and the colon 
(:) represents a filter operation that retains only the 
cells that meet the specified criteria. Let Z be the gene 
expression matrix, where each row corresponds to a cell 
and each column corresponds to a gene. The element 

(1)C′ = {cinC : n(c) ≥ X}

Z[i, j] represents the expression level of gene j in cell i . 
To remove genes that are found in fewer than Y  cells, we 
have applied a filter based on the number of non-zero 
entries in each column of Z . Let M[j] be the number of 
non-zero entries in column j of Z , i.e., the number of 
cells where gene j is expressed. Then, it can be defined as 
a filtered gene expression matrix Z′ as given in Eq. 2, i.e., 
Z′ consists of the columns of Z where the corresponding 
gene is expressed in at least Y  cells. The colon (:) symbol 
in Eq. 2 is a notation for all the rows and columns of Z 
which satisfies the condition.

Our scRNA-seq data were meticulously obtained using 
cutting-edge sequencing platforms to guarantee excep-
tional data quality and reliability. The iPSC and TMWC 
libraries were sequenced on an Illumina NextSeq 500 
platform, employing a 150-cycle NextSeq High Output 
Reagent Kit v2.5. The sequencing protocol consisted of 
specific parameters: 26 bp for Read 1, 8 bp for the Index, 
and 98  bp for Read 2. The sequencing process on the 
NextSeq 500 platform was managed by the skilled team 
at the Institute of Molecular Bioscience Sequencing Core 
Facility.

Furthermore, the two PBMC libraries underwent 
sequencing on the Illumina NovaSeq 6000 instrument, 
featuring a 2 × 150 cycle S4 flow cell, operating in stan-
dalone mode. The libraries were loaded at a concen-
tration of 8  nM, with each sample having a volume of 
350 μL. The proficient execution of the NovaSeq 6000 
sequencing procedure was carried out by the Kinghorn 
Centre for Clinical Genomics Sequencing Core Facility.

Libraries generated using the 10 × Genomics Chro-
mium system underwent a critical conversion pro-
cess employing the MGIEasy Universal Library 
Conversion kit (App-A) before being sequenced on the 
MGISEQ-2000 instrument. For each library, 10  ng of 
material underwent 10 cycles of polymerase chain reac-
tion (PCR) to introduce a 5’ phosphorylation exclusively 
on the forward strand. Following this, the purified PCR 

(2)Z′ = Z[:, (M >= Y )]

Table 1 Description of datasets including number of singlets, doublets and cells filtering criteria

scRNA‑seq dataset No. of cells No. of genes No. of cell 
type

No. of singlet No. of doublet Filtering criterion

Human pancreas 16,382 19,093 14 16,373 9 C′ = {cinC : n(c) ≥ 200}
Z ′ = Z [:, (M ≥ 10)]

Human skeletal muscle 52,825 33,538 8 52,743 82 C′ = {cinC : n(c) ≥ 100}
Z ′ = Z [:, (M ≥ 10)]

Human heart 38,929 27,420 13 37,450 1479 C′ = {cinC : n(c) ≥ 200}
Z ′ = Z [:, (M ≥ 10)]
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product was subjected to denaturation, after which it 
was combined with a ’splint’ oligonucleotide. This oli-
gonucleotide is homologous to the P5 and P7 adapter 
regions of the library, facilitating the formation of a 
circular single-stranded DNA molecule. A ligase reac-
tion was subsequently carried out to produce a com-
plete single-stranded DNA circle of the forward strand. 
An exonuclease digestion step was executed to remove 
single-stranded non-circularized DNA molecules. The 
circular single-stranded DNA molecules then under-
went Rolling Circle Amplification (RCA), generating 
300–500 precise copies of the libraries, forming DNA 
Nanoballs (DNB). Each DNB library was loaded onto a 
1500 M feature patterned array flow cell in preparation 
for sequencing, utilizing the MGISEQ-2000RS High-
Throughput Sequencing Set (App-A). The sequencing 
process entailed 26 bp for Read 1 and 100 bp for Read 2 

cycles, without an index barcode read, as only one sam-
ple was run per flow cell. FASTQ files were locally gen-
erated on the instrument, and sequencing was expertly 
conducted at the BGI Shenzhen, MGI R&D facility.

Filtering out mitochondrial and ribosomal genes 
can enhance the reliability of scRNA-seq data, as high 
expression levels of these genes can signal poor data 
quality caused by technical issues like mitochondrial 
stress or cell lysis. In addition to reducing technical dif-
ferences between cells, the removal of these genes can 
also improve downstream analysis and interpretation 
(McCarthy et al. 2017). Owing to the stochastic nature 
of RNA sequencing, various cells in a collection may 
have differing degrees of RNA sequenced, resulting in 
varying total read counts per cell. Normalization aids in 
compensating for these variations in sequencing depth 
by scaling the gene expression values for each cell by a 

Fig. 1 Violin plot of preprocessed data to visualize the distribution of four metrics across the cells in three scRNA-seq human tissue datasets: a 
pancreas, b skeletal muscle, c heart
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factor that corresponds to the total amount of reads for 
that cell (Vallejos et al. 2017).

Data derived from scRNA-seq may be vulnerable 
to technical biases such as batch effects, variances in 
cell capture efficiency, or gene-specific effects such as 
amplification bias or content bias. Normalization can 

assist in accounting for these technological biases, 
allowing for a more accurate comparison of gene 
expression levels across cells. During sample prepara-
tion, sequencing, and data processing, technical noise 
can be created during scRNA-seq. By leveling the gene 
expression data of each cell, scaling can lessen the influ-
ence of technical noise. Scaling can enhance the dis-
play and clustering of scRNA-seq data by lowering the 
influence of genes with high expression values, which 
can control the analysis and obscure the signal from 
other genes with lower expression levels (Lytal and Ran 
2020). Figure 1 depicts the preprocessed data in terms 
of a violin plot, explaining the distribution of four met-
rics across the cells in all three scRNA-seq datasets. 
The four metrics are: (i) the number of genes detected 
in each cell based on read counts, (ii) the total number 
of reads sequenced for each cell, (iii) the percentage of 
reads mapped to mitochondrial genes for each cell, (iv) 
the percentage of reads mapped to ribosomal genes for 
each cell. The y-axis of the plot shows the distribution 
of the metric values, with the width of the violin indi-
cating the density of cells at that value.

Methodology
The loss function regulates the attractive and repulsive 
forces between each pair of data points; thus, fine-tun-
ing the loss function helps to maintain local structure. 
The PaCMAP aims to bring together the neighbors from 
the HDS in the LDS and push away further points in the 
original space in the LDS. Specifically, it highlights the 
significance of having forces on non-neighbors. PaC-
MAP algorithm prioritizes global structure: neighbors 
and mid-near pairings are attracted, whereas distant 
points are repelled. After the global structure is in place, 
the attractive force on mid-near edges reduces, stabilizes, 
and eventually vanishes over time, leaving the algorithm 
to fine-tune the local structure. PaCMAP has a primary 
objective with three kinds of pairwise loss elements, each 
related to a certain kind of graph section: nearest neigh-
bor edges (NE), mid-near edges (ME), and repulsion 

edges with additional points (RE) (Wang et al. 2022). The 
loss function of PaCMAP is given Eq. 3.

where
(3)

LossPaCMAP = ωNE .LossNE + ωME .LossME + ωRE .LossRE

 

and  The edges 
are additionally weighted by the coefficients ωNE , ωME , 
and ωRE , which collectively represent the total loss. As 
part of the optimization process, the weights are dynami-
cally adjusted. The Student’s t-distribution utilized in the 
similarity functions of t-SNE and TriMap is the reason 
for the decision to employ the scaled distance  (Wang 
et al. 2022).

UMAP employs a binary search for the scale of each 
point, comparable to t- SNE, which utilizes entropy as 
perplexity for a similar search. UMAP and t-SNE imply 
that data points are distributed uniformly on an inher-
ent LDS manifold since the search makes the neighbor-
hoods of several data points behave identically. PaCMAP 
discards the data compactness surrounding each point by 
nullifying the influence of compactness with the search 
for scales of data points. CP-PaCMAP regularizes the 
cost function of PaCMAP to account for and return the 
compactness information surrounding each data point. 
Empirical evidence demonstrates that this incorpora-
tion of compactness information yields a remarkable 
embedding despite requiring additional calculation for 
the regularization element. If a data point’s neighbors are 
relatively close, the surrounding area is compact for that 
point. Consequently, the local radius, determined as the 
mean distance between neighbors, can serve as a meas-
ure of local compactness.

A method for producing LDS that preserves compact-
ness information at individual data points is proposed. 
This is achieved by defining a local radius, which for-
malizes the concept of spatial compactness. The prox-
imity of nearest neighbors is often used to determine 
whether a data point belongs to a compact or sparse 
region. Specifically, a data point is considered to be in a 
compact area if its nearest neighbors are in close prox-
imity to it. In contrast, a data point is deemed to be in a 
sparse area if its nearest neighbors are located at a con-
siderable distance from it. The level of compactness for 
a given data point is determined by utilizing the average 
distance to nearest neighbors. In order to formalize this 
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concept, it is necessary to have two elements for a given 
data point ai . The proposed methodology involves 
the use of a pairwise distance function, indicated as 
d(ai, aj) , and a probability distribution, denoted as pj|i , 
which assigns weights to each data point aj depending 
on its distance from ai . The weights assigned to distant 
points are comparatively lower than those assigned to 
nearby points. The local radius at a given data point ai , 
represented as Cp(ai) , is defined as the expected value 
of the distance function on all other data points aj , with 
respect to the conditional probability pj|i . This meas-
ure effectively captures the average distance between ai 
and its neighboring points as given in Eq.  4. The CP-
PaCMAP approach leverage the probability distribu-
tions of PaCMAP, which is capable of capturing local 
associations. To determine the local radius in the input 
HDS, we perform a renormalization of the edge prob-
abilities Hij . To obtain a conditional distribution pj|i , 
Hij/�

N
j=1Hij can be calculated, and then determine the 

local radius as given in Eq. 5.

Subsequently, the local radius is determined within 
the LDS. Let bi denote the embedding coordinates of 
data point ai . A distribution that is corresponding to H 
is required to compute the probable distance between bi 
and its neighboring data points in the LDS. It is appropri-
ate for the distribution in examining to possess adaptive 
length-scales analogous to those of H . This is necessary 
to ensure that a consistent number of nearest neighbors 
are incorporated in the calculation of the local radius at 
various data points within the dataset. The variable L is 
indicative of a total average across various length-scales. 
By defining pj|i as Lij/�N

j=1Lij and d(bi, bj) as � bi − bj�2 , 
the local radius in the LDS can be determined using 
Eq. 6.

Let us consider a data point from the input high ( H ) 
dimensional data x ∈ R

H with K  neighborhood data 
points uniformly distributed in a sphere of radius ζH 
and volume v ∝ ζHH  . Both structure and compactness 
should be preserved in LDS ( L < H) , this implies that x 
and its neighbors should be mapped to an L-dimensional 

(4)Cp(ai) := Ej∼pij

[

� ai − aj�2
]

(5)CH (ai) =
1

∑N
j=1Hij

N
∑

j=1

Hij � ai − aj�2

(6)CL(bi) =
1

∑N
j=1 Lij

N
∑

j=1

Lij � bi − bj�2

sphere of uniform density with radius ζL , and, to retain 
the compactness of x′s K-neighborhood, the volume of 
the L-dimensional sphere should also remain as v such 
that v ∝ ζ LL  , this indicates that ζL and ζH have a power 
law association i.e. ζL ∝ ζH−L

H  . Applying logarithms will 
result in logζL = (H− L)logζH + β  for some val-
ues of β. Driven by the exponential scaling of com-
pactness with regards to dimensionality of the feature 
vectors, we seek for a power law association between the 
local radius in the input HDS dataset and in the output 
LDS for some hyperparameters α and β in order to retain 
the compactness. This is reformulated as an affinal con-
nection between the logarithms of the local radii as given 
in Eq. 7.

where ciL = ln(CL(bi)), c
i
H = ln(CH (bi)), and γ = ln(α) . 

Our compactness retention objective is to select the LDS 
in such a way that the correlation between the logarith-
mic local radii of the input HDS data points and the out-
put LDS is maximized. This method basically resembles 
canonical correlation analysis (Andrew et al. 2013). Thus, 
it can be stated that there exists an affine relationship 
between the logarithms of local compactness. Correla-
tion serves as a means of measuring linear or affine inter-
dependence; therefore, the correlation of the logarithms 
of local compactness is implemented as given in Eq.  8, 
whereas the covariance and variance of compactness can 
be computed using Eq. 9 and Eq. 10, respectively.

where µL = (1/n)�N
j=1c

j
L , µH = (1/n)�N

j=1c
j
H . The PaC-

MAP’s cost function is regularized by maximizing the 
correlation of local compactness to create the CP-PaC-
MAP’s cost function, which needs to be minimized. The 
CP-PaCMAP algorithm is given in Algorithm  1 and its 
loss function is stated in Eq.  11. η is the regularization 
parameter that weights the correlation in respect to the 
initial cost of the PaCMAP. Similar to PaCMAP, CP-PaC-
MAP optimizes via stochastic gradient descent

(7)CL(bi) = α(CH (ai))
β ⇒ ciL = βciH + γ

(8)Corr(cL, cH ) =
Cov(cL, cH )√

Var(cL)Var(cH )

(9)

Cov(cL, cH ) =
1

n− 1

n

i=0
(ciL − µL)((c

i
H − µH )

(10)
Var(cL) =

1

n− 1

∑n

i=0
(ciL − µL)

2
,Var(cH )

=
1

n− 1

∑n

i=0
(ciH − µH )

2
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Algorithm 1 Compactness Preservation Pairwise Controlled Manifold Approximation Projection.

To ensure transparency and reproducibility, we are 
committed to providing details of the specific non-
default parameters employed in our methodology. Below, 
we outline the key non-default parameters along with 
their values:

Number of Neighbor Data Points (n_NBR):
Default value: 15
Used value: 20
Ratios for mid-near pairs, further pairs, and average 

distant pairs (ME_ratio, RE_ratio, AE_ratio):
Default values: ME_ratio = 0.5, RE_ratio = 2, 

AE_ratio = 0.5
Used values: ME_ratio = 0.6, RE_ratio = 1.5, 

AE_ratio = 0.6
Number of Gradient Steps (n_iters):
Default value: 450
Used value: 600
Initializing Method for the LDS (init):
Default value: PCA
Used value: Random
Regularization Parameter (η) for CP-PaCMAP:
Default value: 0.01
Used value: 0.005

(11)LossCP−PaCMAP = LossPaCMAP − ηCorr(cL, cH ) Experiments
DR techniques such as UMAP, TRIMAP, and t-SNE are 
very commonly used for scRNA-seq data visualization. 
PaCMAP is a recently proposed approach to visualize 
high-dimensional feature vectors. PHATE and IVIS are 
occasionally used for data visualization. We have consid-
ered all these techniques in our study to compare with 
the proposed CP-PaCMAP approach. Initially, all the DR 
techniques are implemented on 2D-generated data to 
understand the necessity and idea behind compactness 
preservation. The 2D data is generated in such a way that 
it contains linear data points belonging to 4 class labels. 
Each category is meant to hold a different degree of com-
pactness within the cluster, as shown in Fig. 2a. The base 
cluster of data points is very compactly placed compared 
to the second cluster. The third cluster contains a lesser 
level of compactness compared to the second. The fourth 
cluster is the one with more sparse data points.

The DR techniques are applied to the 2D gener-
ated data, and their corresponding 2D embeddings 
are depicted in Fig.  2, 3, 4 and 5. PaCMAP and UMAP 
visualization shown in Fig. 2b, c clearly prove that both 
the local structure and global structure of the original 
data are well preserved in LDS. TRIMAP and IVIS are 
able to retain the global structure but slightly struggle 
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Fig. 2 2D visualization of LDS generated by various DR techniques. b PaCMAP, c UMAP, d t-SNE, e TRIMAP, f PHATE, g IVIS, h CP-PaCMAP on a 
generated linear data, with different level of compactness at each cluster
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to maintain the local structure, as shown in Fig.  2e, g. 
PHATE (Fig.  2f ) has an issue in preserving both struc-
tures, while t-SNE (Fig. 2d) is able to retain local struc-
ture in the LDS but has minor deviations in maintaining 
the global structure. Among all the seven DR techniques 

examined, the proposed CP-PaCMAP approach per-
forms as well as PaCMAP in preserving both local and 
global structures in the LDS. It is also able to hold the 
compactness aspect present in all the clusters of the orig-
inal data, as shown in Fig. 2h.

Fig. 3 2D visualization of LDS generated by various DR techniques. a PaCMAP, b UMAP, c t-SNE, d TRIMAP, e PHATE, f IVIS, g CP-PaCMAP on human 
pancreas scRNA-seq data containing 14 categories of cell type
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Results and discussions
We utilized a diverse array of assessment criteria to 
appraise the efficacy of the proposed approach and vari-
ous DR methodologies across three distinct scRNAseq 
datasets—Human pancreas, skeletal muscle, and heart. 
Trustworthiness and continuity metrics are leveraged to 

scrutinize the fidelity of local and global structures within 
the reduced-dimensional representations (Andrew et  al. 
2013; Lee and Verleysen 2009; Jurman et  al. 2012; You-
suff and Babu 2023; Allen et al. 2021; Gatin et al. 2019). 
The Mathew Correlation Coefficient metric provides the 
assessment of classification task (with imbalanced cell 

Fig. 3 continued
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types classes) performed on the LDS generated by all 
the DR techniques, while the Mantel test helps to evalu-
ate the preservation of pairwise relationships between 
cells in the original HDS and their corresponding LDS. 
Furthermore, a runtime analysis is done to visualize the 

computational efficiency of each technique. This com-
prehensive suite of metrics collectively furnishes a multi-
dimensional evaluation, elucidating both the merits and 
potential limitations of each approach within the diverse 
landscape of scRNAseq data analysis.

Fig. 4 2D visualization of LDS generated by various DR techniques. a PaCMAP, b UMAP, c t-SNE, d TRIMAP, e PHATE, f IVIS, g CP-PaCMAP on human 
skeletal muscle scRNA-seq data containing 8 categories of cell type
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Trustworthiness and continuity
Trustworthiness ( TW  ) helps us understand how well local 
relationships are preserved. It focuses on the nearest neigh-
bors of each data point and checks if they remain close in 
the LDS. This is particularly important for methods that 
aim to capture local structures and clusters. Continuity 

( CN  ) helps us understand the preservation of global data 
patterns and the overall structure. It ensures that data 
points that were far apart or close in the HDS retain their 
relative distances in the LDS. This is essential for meth-
ods that aim to maintain the broader structure of the data 
(Wulfman et  al. 2010; Ribaut et  al. 2007; Sharini et  al. 

Fig. 4 continued
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Fig. 5 2D visualization of LDS generated by various DR techniques. a PaCMAP, b UMAP, c t-SNE, d TRIMAP, e PHATE, f IVIS, g CP-PaCMAP on human 
heart scRNA-seq data containing 13 categories of cell type
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2018; Pouard and Collange 2007; Bonnet et  al. 2012; Sun 
et  al. 2023; Dong et  al. 2022). TW  and CN  play a crucial 
role in validating and selecting appropriate DR techniques 
for scRNA-seq data analysis. They provide quantitative 
measures of how well the DR technique preserves the bio-
logical structure, ultimately leading to more reliable and 

interpretable results. The TW  and CN  score of a DR tech-
nique can be calculated using the formulae given in Eqs. 12 
and 13 (Lee and Verleysen 2009).

(12)

TW = 1−
2

C(C − 1)

∑C

i=1

∑C

j=1
(rm

(

i, j
)

−mneighbors

(

i, j
)

)

Fig. 5 continued
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Fig. 6 a Trustworthiness and b Continuity scores for Human pancreas scRNA-seq dataset

Fig. 7 a Trustworthiness and b Continuity scores for Human skeletal muscles scRNA-seq dataset

Fig. 8 a Trustworthiness and b Continuity scores for Human heart scRNA-seq dataset



Page 17 of 23Yousuff et al. Journal of Analytical Science and Technology            (2024) 15:1  

• TW  is the trustworthiness score and CN  is the conti-
nuity score for a given m , which represents the num-
ber of nearest neighbors to consider.

• N  is the total number of cells (data points).
• rm(i, j) represents the rank of cell j among the m 

nearest neighbors of cell i in the HDS. This indicates 
how close cell j is to cell i in the original space con-
sidering m neighbors.

• mneighbors

(

i, j
)

 is a binary indicator function. It takes 
a value of 1 if cell j is among the m nearest neighbors 
of cell i in the LDS. It checks whether the proximity 
relationship is maintained in the reduced space.

The TW  score ranges from 0 to 1 ( TW ∈ [0, 1] ), where 
0 indicates that the local structures are not preserved 
well in the LDS, and 1 indicates perfect preservation of 
local structures. The continuity score ranges from -1 to 
1 ( CN ∈ [−1, 1] ). A score of -1 means that the global 
structure is perfectly preserved in reverse order (what is 
close in the original space is far in the reduced space), 0 
means no preservation, and 1 means perfect preservation 
of the global structure. TW  and CN  scores are computed 
on various m values for all the three different scRNAseq 
datasets. Figures  6, 7, and 8 demonstrate that CP-PaC-
MAP is performing comparatively fine with respect to 
all other DR techniques. Hence, compactness can be well 
preserved along with local and global structures of HDS 
into LDS without any compensation in performance.

Classification model and Matthew’s correlation coefficient
In this study, we applied the K-nearest neighbor (KNN) 
classification algorithm to analyze scRNA-seq data. 
To assess the algorithm’s performance and ensure 
robustness, we employed tenfold cross-validation. The 
scRNA-seq dataset consisted of gene expression pro-
files for individual cells, with the target variable being 
the cell type. By utilizing the KNN algorithm with a k 
value of 25, we aimed to predict the cell types based on 
the similarity of gene expression profiles among neigh-
boring cells. The tenfold cross-validation approach 
allowed us to evaluate the algorithm’s performance by 
splitting the data into 10 subsets, training the model on 
nine of them, and testing it on the remaining subset. 
This process was repeated 10 times, ensuring that each 
subset served as training and testing data. Confusion 
matrices are obtained for all the DR techniques applied 
to each scRNA-seq dataset. Finally, all the confusion 
matrices are utilized to compute Matthew’s correlation 

(13)

CN = 1−
2

C(C − 1)

∑C

i=1

∑C

j=1
(mneighbors

(

i, j
)

− r
m

(

i, j
)

)
coefficient (MCC), the classification performance 
metric.

The MCC is a widely utilized performance metric for 
assessing prediction precision in multi-class classifica-
tion tasks (Zegarra Flores and Radoux 2023; Dine et al. 
2022; Lee and Park 2022; Thakur et al. 2023; Zhang and 
Leatham 2019; Zhou et  al. 2018). The overall assess-
ment of classification accuracy is determined by con-
sidering the True Positives (TP), True Negatives (TN), 
False Positives (FP), and False Negatives (FN). TP refers 
to the count of positive instances that have been exactly 
classified. TN refers to the count of negative instances 
that are accurately classified. FP refers to the quantity 
of instances that are erroneously classified as positive. 
FN refers to the quantity of instances that are errone-
ously classified as negative. MCC is a metric that takes 
into account the distribution of true positives, true 
negatives, false positives, and false negatives in order 
to yield a singular value that serves as a comprehen-
sive indicator of the classifier’s predictive performance. 
A higher MCC score signifies superior performance, 
where a value of 1 represents the ideal result, and -1 
represents the lowest outcome (Jurman et  al. 2012; 
Yousuff and Babu 2023).

The MCC is a valuable metric in the context of multi-
class classification tasks due to its ability to consider 
the disparities in class distributions. This metric offers a 
more dependable assessment of the classifier’s effective-
ness, particularly when confronted with unequal class 
proportions or imbalanced datasets. In the context of 
scRNA-seq classification, the MCC is a valuable metric. 
It is beneficial because it takes into account the differ-
ences in class distributions, which are often encountered 
in scRNA-seq data. The MCC provides a reliable measure 
of the classifier’s performance, especially when dealing 
with imbalanced datasets or variations in the propor-
tions of different cell types. It helps assess the accuracy 
and robustness of the classification algorithm in handling 
the complexities of scRNA-seq data (Jurman et al. 2012). 
In the multiple cell types (categories or classes) scenario, 
the MCC can be mathematically expressed by utiliz-
ing a confusion matrix M that represents the classifica-
tion outcomes for each category C as given in Eq. 12. The 
MCC value of the DR techniques computed on all three 
scRNA-seq data is depicted in Fig. 9. The proposed CP-
PaCMAP technique demonstrates slight improvement in 
MCC metric, compared to existing DR techniques (Jur-
man et al. 2012).

(12)
MCC =

o× d −
∑C

c pc × tc
√

(

d2 −
∑C

c p2c

)

×
(

d2 −
∑C

c t2c

)
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where,  tc =
∑C

i Mic the number of times category C 
actually occurred,  pc =

∑C
i Mci the number of the times 

category C got predicted,  o =
∑C

c Mcc the total count of 
observations rightly predicted, d =

∑C
i

∑C
j Mij the total 

count of data points.

Mantel test
The Mantel test can be utilized along with the Pearson 
Correlation Coefficient (PCC) to evaluate the preserva-
tion of pairwise relationships between cells in the origi-
nal HDS and their LDS representations. The PCC is a 
measure of relationship between two sets of data, is com-
monly used as the correlation coefficient in the Mantel 
test (Zhou et  al. 2018; Mushtaq et  al. 2020; Singh et  al. 
2023; Fakhfakh et  al. 2020; Gupta 2022; Zhao 2021). By 
comparing the PCC obtained from the Mantel test, it is 
possible to determine how well the DR technique pre-
serves the pairwise relationships between cells. A higher 
PCC value (+ 1) indicates a stronger correlation and sug-
gests better preservation of the relationships in the LDS. 
To create a distribution of correlation values, Mantel test 
procedure was performed multiple times on randomly 
chosen subsamples of the scRNA-seq data points (n = 500 
cells per subsample picked without replacement). Mantel 

test on cluster centroid distance matrices exposes poten-
tial similarities or variations in the underlying grouping 
patterns (Szubert et  al. 2019). PCC values obtained for 
various DR techniques on three different scRNA-seq 
Datasets demonstrated a strong correlation between the 
actual HDS and LDS cluster centroid distances. Mean 
and Median PCC values for all the DR techniques on 
scRNA-seq Human pancreas, skeletal muscle, and heart 
are listed in Table 2.

The RainCloud plot is a smart combination of a Strip 
plot, a split-half violin plot, a boxplot with whiskers, and 
a point plot. In the case of a strip plot, the data points 
are represented as individual dots distributed evenly 
along the categorical axis, providing a more granular 
view. Violin plots reveal data distribution shape, density, 
and spread. Width signifies density; wider areas have 
more data, and narrower areas have less. Longer vio-
lins suggest a broader range, while shorter ones imply 
a narrower range. Outliers are shown when data points 
extend beyond the violin’s range. The box in the box 
plot represents the middle 50% of the data (interquartile 
range—IQR), with the median shown as a central line. 
The box length reflects the data spread, longer indicating 
a larger spread and shorter suggesting a narrower spread. 

Fig. 9 MCC performance metric computed using confusion matrices of KNN model for all the DR techniques implemented on each scRNA-seq 
dataset
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Whiskers extend to 1.5 times the IQR, covering the data’s 
range from minimum to maximum values. The flag of the 
point plot is meant to represent the mean of data in the 
context of the RainCloud plot (Allen et al. 2021).

PCC values collected after the permutations of the 
Mantel Test on different HDS scRNA-seq datasets and 
their corresponding LDS are plotted using RainCloud 
plots, as shown in Figs.  10, 11, and 12, respectively. 
We are able to observe a higher density of PCC values 
towards + 1 in the case of CP-PaCMAP, as depicted using 
a split-half violin plot. The Median, minimum, and maxi-
mum values of PCC are also comparatively better in CP-
PaCMAP, which is observed in the box plot. THE mean 
PCC values of CP-PaCMAP are also high compared 
to other DR techniques demonstrated using point plot 
flags (Fasil and Rajesh 2023; Gupta et  al. 2023a, 2023b; 
Sénéchal et al. 2005; Mukherjee et al. 2021; Gupta 2023; 
Kaur and Khehra 2021).

Runtime analysis
We have comprehensively explored several DR tech-
niques, including PaCMAP, UMAP, t-SNE, TRIMAP, 
PHATE, and IVIS, alongside the proposed technique 
termed CP-PaCMAP. These techniques are pivotal 
in scRNA-seq analysis, revealing large-scale datasets’ 
intrinsic structures and relationships. The primary 
objective was to assess these DR techniques’ runtime 

Table 2 Mean and median PCC values obtained from the 
Mantel test for various DR techniques on all three scRNA-seq 
Datasets

scRNA‑seq dataset DR techniques Mean PCC 
value

Median 
PCC value

Human pancreas CP-PaCMAP 0.85 0.85

PaCMAP 0.83 0.84

UMAP 0.78 0.80

t-SNE 0.80 0.82

TRIMAP 0.76 0.76

PHATE 0.75 0.74

IVIS 0.72 0.73

Human skeletal muscle CP-PaCMAP 0.80 0.79

PaCMAP 0.77 0.76

UMAP 0.77 0.77

t-SNE 0.76 0.77

TRIMAP 0.74 0.75

PHATE 0.73 0.74

IVIS 0.76 0.77

Human heart CP-PaCMAP 0.77 0.78

PaCMAP 0.75 0.76

UMAP 0.74 0.76

t-SNE 0.73 0.74

TRIMAP 0.73 0.72

PHATE 0.72 0.73

IVIS 0.70 0.72

Fig. 10 Statistical analysis of PCC values of Human pancreas scRNA-seq dataset: Raincloud plot incorporating Strip plot (PCC values distribution), 
Split-Half Violin plot (Density of distribution), Box plot (Outliers, Min, Max, Median), and Point plot (Mean)
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(computational efficiency) across various data point 
magnitudes ranging from 5000 to 30,000. To accom-
plish this, the execution times of each technique in sec-
onds are recorded and subsequently visualized through 
a line graph, as shown in Fig. 13. Upon scrutinizing the 

outcomes, it is apparent that PaCMAP exhibited remark-
able performance across all scenarios. It consistently out-
performed its counterparts, showcasing its prowess in 
runtime. Intriguingly, CP-PaCMAP emerged as a nota-
ble approach, securing the second position in terms of 

Fig. 11 Statistical analysis of PCC values of Human skeletal muscle scRNA-seq dataset: Raincloud plot incorporating Strip plot (PCC values 
distribution), Split-Half Violin plot (Density of distribution), Box plot (Outliers, Min, Max, Median), and Point plot (Mean)

Fig. 12 Statistical analysis of PCC values of Human heart scRNA-seq dataset: Raincloud plot incorporating Strip plot (PCC values distribution), 
Split-Half Violin plot (Density of distribution), Box plot (Outliers, Min, Max, Median), and Point plot (Mean)
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runtime. The slight overhead incurred by CP-PaCMAP 
can be attributed to its endeavor to maintain compact-
ness within the transformed LDS. CP-PaCMAP is built 
upon PaCMAP, so it additionally involves computing 
average distance pairs (while inducing a minimal delay), 
preserving essential structural integrity.

Conclusion
Our study highlights the pivotal role of DR techniques 
in unraveling the intricate relationships within scRNA-
seq data. While PCA remains a stalwart in linear DR, 
the limitations of this approach are evident in the face 
of diverse cell types. Nonlinear techniques like UMAP, 
t-SNE, TriMap, PHATE, and IVIS have emerged as pow-
erful alternatives, each with unique strengths and con-
straints. Our introduction of the CP-PaCMAP algorithm 
addresses many challenges, providing a robust solution 
for visualizing and analyzing scRNA-seq data. Its ability 
to preserve both local and global structures, coupled with 
its enhanced computational efficiency, positions CP-PaC-
MAP as a promising tool for researchers seeking to gain 
deeper insights into cellular heterogeneity.

Future work
Looking ahead, several avenues for further exploration 
and refinement can be implemented. Firstly, extend-
ing CP-PaCMAP to accommodate even larger and more 
diverse datasets could enhance its applicability across a 
broader spectrum of biological systems. Additionally, 
incorporating CP-PaCMAP into integrated workflows 
for scRNA-seq analysis, potentially in conjunction with 
advanced machine learning techniques, holds promise 
for uncovering novel biological insights. Exploring the 
potential of CP-PaCMAP in the context of multi-modal 

single-cell omics data could further expand its utility in 
deciphering complex cellular landscapes. Furthermore, 
investigating the algorithm’s performance in scenarios of 
perturbed cellular states or rare cell type identification 
could yield valuable insights for various biomedical appli-
cations. Finally, efforts towards enhancing the interpret-
ability of the resulting low-dimensional representations 
and developing user-friendly interfaces will be crucial for 
enabling the broader adoption of CP-PaCMAP in the sci-
entific community. By pursuing these directions, we aim 
to advance the capabilities of DR techniques in scRNA-
seq analysis and contribute to a more comprehensive 
understanding of cellular biology.
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