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Abstract 

The optimization of geometrical pore control in high‑capacity Ni‑based cathode materials is required to enhance 
the cyclic performance of lithium‑ion batteries. Enhanced porosity improves lithium‑ion mobility by increasing 
the electrode–electrolyte contact area and reducing the number of ion diffusion pathways. However, excessive 
porosity can diminish capacity, thus necessitating optimizing pore distribution to compromise the trade‑off relation. 
Accordingly, a statistically meaningful porosity estimation of electrode materials is required to engineer the local 
pore distribution inside the electrode particles. Conventional scanning electron microscopy (SEM) image‑based 
porosity measurement can be used for this purpose. However, it is labor‑intensive and subjected to human bias 
for low‑contrast pore images, thereby potentially lowering measurement accuracy. To mitigate these difficulties, we 
propose an automated image segmentation method for the reliable porosity measurement of cathode materials 
using deep convolutional neural networks specifically trained for the analysis of porous cathode materials. Combined 
with the preprocessed SEM image datasets, the model trained for 100 epochs exhibits an accuracy of > 97% for fea‑
ture segmentation with regard to pore detection on the input datasets. This automated method considerably reduces 
manual effort and human bias related to the digitization of pore features in serial section SEM image datasets used 
in 3D electron tomography.
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Graphical abstract

Introduction
Extensive research efforts have been made in recent 
decades to develop high-performance durable Li-ion 
batteries with large capacity. Among promising candi-
dates, high-capacity Ni-based cathode materials, e.g., 
 LiNi0.8Co0.1Mn0.1O2, have been considered owing to their 
outstanding properties related to energy density, cycling 
stability, and manufacturing cost (Shim et al. 2019). The 
optimization of geometrical parameters, i.e., the poros-
ity of the secondary particles of the cathode materials, 
was suggested as an effective strategy to further improve 
performance (Chen et al. 2016). X-ray computed tomog-
raphy (XCT) is used to characterize the porosity of elec-
trode materials. However, this technique is dedicated 
to the microscale characterization of porous electrode 
structures at the cell level (Pietsch and Wood 2017). 
Cross-sectional image analysis or tomography interpre-
tation using scanning electron microscopy (SEM) com-
bined with a focused ion beam (FIB)-based serial milling 
was suggested for precise porosity quantification owing 
to its nanoscale resolution down to a level of 10  nm 
(Cantoni et al. 2014; Hong et al. 2022). However, statisti-
cal interpretation using 3D tomographic reconstruction 
or 2D-image-based pore segmentation requires a large 
number of image datasets and heavy human input for 
digital processing. In general, a subjective decision can 
be made regarding the weak image contrast of pores in 
SEM images, which can reduce the measurement verac-
ity. Therefore, a reliable machine-perspective automated 
segmentation analysis of pores in the SEM images of 
porous cathodes is required. Digital segmentation meth-
ods were typically used to estimate the pore content in 
a material based on SEM imaging (Andrä et  al. 2013). 
These digital methods first detect the edge of an image 
by applying a random threshold to each pixel and then, 

extend the detection condition to the surrounding pixels 
using a marker-based watershed. Furthermore, the tra-
ditional Otsu method (Zhang and Hu 2008) and Canny 
edge detection technique (Chen et  al. 2015) were used 
for edge detection. Alternatively, the expectation–maxi-
mization/maximization of posterior marginals (Comer 
and Delp 2000) can be considered for edge detection. 
However, multiple parameters for this digital processing 
must be optimized. Digital segmentation using the afore-
mentioned approaches is generally time-consuming and 
requires human intervention for each digital process-
ing step, thus complicating measurements with statisti-
cal significance (Galbany et  al. 2005; Gesho et  al. 2020; 
Roldán et al. 2021). To address the limitations of conven-
tional digital approaches, convolutional neural networks 
(CNNs) combined with relevant filters can be used to 
devise a promising solution because CNNs are highly 
efficient in training images, extracting features, perform-
ing semantic segmentation, and interpreting feature 
characteristics (Krizhevsky et  al. 2012; Long et  al. 2015; 
Nanfack et al. 2018; Garcia-Garcia et al. 2017). Recently, 
machine learning/deep learning algorithms such as ran-
dom forest classifiers and CNNs for feature segmenta-
tion were actively adapted to reduce contrast artifacts 
in traditional SEM images and to improve efficiency and 
reliability in FIB-SEM tomography for pore structure 
characterizations (Zang et al. 2023; Osenberg et al. 2023). 
Considering the advantages of the CNN-based approach, 
the geometrical characterization of high-capacity Ni-
based cathode materials can be rapidly and reliably 
performed, which facilitates the understanding of the 
electrode structures and advances the design strategy for 
high-performance electrodes (Finegan et  al. 2022; Yang 
et al. 2022).
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This study introduces a CNN-based model for the 
accurate feature segmentation and statistical interpreta-
tion of geometrical factors, e.g., the pore content distrib-
uted in high-capacity Ni-based cathode materials. To this 
end, a convolutional encoder–decoder model was used 
to construct a deep learning model for the pore segmen-
tation of the SEM images of cathode materials, and the 
performance of the model was evaluated by comparing 
it with the ground truth data based on human inputs. 
The established model can automatedly expedite the 
segmentation process for a large dataset of SEM images 
and effectively learn pore features from SEM images, reli-
ably determining porosity with an accuracy of > 97%. To 
optimize the performance of the proposed model for the 
semantic detection and extraction of geometrical pores 
from raw SEM images, the effects of preprocessing of 
raw image data, i.e., hysteresis thresholding (Wang et al. 
2008) or histogram stretching and equalization (Luo 
et al. 2021; Abdullah-Al-Wadud et al. 2007), were exam-
ined. The preprocessing was generally used to improve 
feature segmentation performance in conventional FIB-
SEM tomography. However, whether those digital filters 

are effective has barely been tested in the CNN-driven 
automated feature segmentation. Interestingly, the meas-
ured porosity of the material with this CNN-assisted 2D 
segmentation process was revealed to be well consistent 
with the result measured from the 3D electron tomog-
raphy after the CNN-based workflow optimization. This 
result shows that the labor-intensive effort required for 
pore structure analysis of the cathode materials can be 
substantially reduced, while the human bias in the seg-
mentation task is avoided, warranting the measurement 
veracity corresponding to the learning reliability of the 
used CNN model.

Materials and methods
Sample preparation and data acquisition
The secondary particles of high-capacity Ni-based oxide 
cathodes  (LiNi0.8Co0.1Mn0.1O2, hereafter referred to as 
NCM) were prepared as model samples using the estab-
lished method (Song et al. 2018). The serial section imag-
ing of the porous structures was conducted using the 
Helios5 HX DualBeam™ system installed in the Thermo 
Fisher Scientific laboratory. For SEM imaging, the NCM 

Fig. 1 Microstructure of high‑capacity Ni‑based oxide cathodes  (LiNi0.8Co0.1Mn0.1O2, NCM). a SEM surface image of a secondary particle of NCM. 
b SEM–FIB serial section structure of a secondary particle of NCM. c High‑magnification backscatter electron (BSE) image obtained from the FIB 
cross‑sectioning workflow. Note that statistical noise background and vertical stripe contrast artifacts in all the acquired BSE images were removed 
using Gaussian and FFT filters before constructing the image stack. d Experimental BSE image stack with a cropped size of 256 × 256 pixels and e 
human‑based binarized pore image stack prepared as ground truth datasets after applying hysteresis thresholding. f Concept of the gradient 
magnitude of pixel intensity to determine the hysteresis thresholding condition
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particles were fixed to an Al stub (Agar Scientific) using a 
conductive colloidal silver paste (Ted Pella) (Fig. 1a). To 
reduce the surface contamination of the NCM particles, 
the sample was baked for 2.5 h at 300 °C in an oven and 
further cleaned with Ar plasma for 2  h in the FIB-SEM 
chamber. Thereafter, the NCM particles were moved to 
the beam coincident point of the SEM and FIB, where 
each beam was scanned simultaneously during SEM 
imaging and FIB milling. A cross-sectional image is 
shown in Fig. 1b. This acquisition process can be gener-
ally automated in modern FIB-SEM instruments by serial 
functions of automated FIB slicing and consecutive SEM 
imaging. With this function, serial section SEM images 
were automatically taken at the thickness interval of 
15 nm in this experiment (Hong et al. 2022; Cantoni and 
Holzer. 2014). To reduce the artificial-charging-induced 
edge contrast around the pores, a highly magnified 
cross-sectional image of the sample was acquired in the 
backscatter electron (BSE) imaging mode at a low accel-
erating voltage of 2  kV and low beam current of 50 pA 
(Fig. 1c). For FIB milling, the accelerating voltage and ion 
beam current were 30 kV and 2.4 nA, respectively, which 
helped mitigate the curtaining effect caused by the une-
ven vertical milling of the sample (Schwarz et  al. 2003; 
Konvalina et al. 2019).

In the FIB slicing by the depth interval of 15 nm, 400 
BSE images were experimentally acquired from front to 
back side surfaces for the whole size of the NCM second-
ary particle (Fig. 1b). Due to the geometrical constraint of 
the spherical particle, 100 square images practically usa-
ble for pore structure analysis (with an imaging dimen-
sion of 2.3  μm2) per learning session were prepared for 
training and test sessions, which were obtained sepa-
rately from different NCM particles (i.e., 200 images in 
total) for our model. The sizes of the grayscale input and 
output images were set to 256 × 256 pixels (Fig. 1d). Since 
these images were acquired during the cross-sectioning 
of the NCM particles in the FIB system (Burnett et  al. 
2016), the uneven vertical milling of the sample dur-
ing continuous FIB sectioning must be mitigated. This 
phenomenon is known as the curtaining effect, which 
results in surface roughness and adversely affects the 
results of the segmentation process because it generates 
stripe contrast artifacts in SEM images along the verti-
cal direction (Hong et  al. 2022). To remove the vertical 
texture pattern generated by the curtaining effect, a fil-
tering process based on the fast Fourier transform (FFT) 
was employed for the entire SEM image stack. In Fourier 
space, the frequency component pertaining to the stripe 
artifacts appears highly directional so that it can be fil-
tered out by applying a wedge-type filter (Burnett et  al. 
2016; Schwartz et  al. 2019). This filtering routine was 
performed on a commercial 3D visualization software 

AVIZO (Thermo Fisher Scientific Inc.) in this study. 
Then, a filtered SEM image stack with the same 16-bit 
single-channel grayscale (Gupta et al. 2015) was prepared 
by applying the inverse FFT operation, which was used 
as the ground truth dataset. As secondary electron (SE) 
imaging in SEM exhibits high contrast on pore edges 
owing to the high yield of secondary electron emission, 
SE imaging is not suitable for reliable pore recognition 
and segmentation. Thus, the use of the BSE imaging 
mode is highly recommended because the signal contrast 
in the BSE mode is not affected by the surface geometry 
of a sample and does not exhibit topographic contrast 
differences (Hong et  al. 2022). Therefore, we obtained a 
series of cross-sectional SEM images of the NCM cath-
ode particles in the BSE imaging mode. Owing to the 
low yield of the BSE signal, the resulting image exhibited 
a poor signal-to-noise ratio (SNR). To reduce statistical 
noise in the BSE image, Gaussian filtering was applied; it 
is efficient in removing high-frequency background noise 
with a probability distribution (Young and Vliet 1995; 
Ramadan 2019). It is noted that the processing of the 
raw SEM images by FFT and Gaussian filters is routinely 
required to prepare the image stack for conventional 
tomography analysis (Additional file 1: Fig. S1).

Hysteresis thresholding for boundary definition
To prepare training and test datasets, digital image pro-
cessing, such as contrast dichotomization (or digital 
binarization), which is a two-class classification prob-
lem that separates black and white and classifies objects 
into one of the two values (Stathis et  al. 2008; Ntogas 
and Veintzas 2008), is required to improve the learning 
efficiency for image segmentation between primary par-
ticles and pores (i.e., empty space) (Fig.  1e). In general, 
the boundaries between particles and pores are difficult 
to be determined when pixel values are similar across 
the boundaries. To perform binarization effectively, an 
appropriate criterion that considers pixel values across 
boundaries is required to reduce errors in the boundary 
definition (Condurache and Aach 2005). To this end, we 
used the hysteresis thresholding technique, which effec-
tively detects the boundaries between objects when the 
pixel values are not sharp (Wang et al. 2008; Condurache 
et al. 2005).

The hysteresis thresholding technique is defined as 
follows (Fig.  1f ): First, the two thresholds of grains and 
pores across the boundary with gradient magnitude are 
defined as high and low thresholds, respectively. Values 
above these thresholds are classified as edge pixels. Sec-
ond, when a pixel is located between the high and low 
thresholds and connected to edge pixels, it is assigned 
as an edge pixel. Finally, the remaining pixels (either 
below the low threshold or at intermediate values but not 



Page 5 of 11Lee et al. Journal of Analytical Science and Technology           (2023) 14:47  

connected to edge pixels) are classified as non-edge pix-
els (Fig.  1f ). When the hysteresis threshold can be reli-
ably determined, binarization processing is effectively 
performed. However, when the thresholding judgment is 
uncertain because the measured values fall into the tran-
sition region (C and D in Fig.  1f ), a decision should be 
made according to the surrounding environment (Wang 
et  al. 2008). The ground truth SEM image dataset (200 
square images with 256 × 256 pixels) containing the dis-
tributed pores was prepared after optimized hysteresis 
thresholding. Among them, 100 images were assigned as 
training data, and the remaining images were used as test 
data. To improve the learning efficiency of our model, 
cross-validation with the same configuration as that of 
the training (50%) and validation datasets (50%) was per-
formed (Azimi et  al. 2018; Badrinarayanan et  al. 2017; 
Chatfield et al. 2014). The cross-validation is usually used 
as a statistical method to evaluate the generalizability 
of a model and to suppress overfitting. With two-fold 
cross-validation, which divides the image dataset into 
two subsets, our model was trained on one subset, and 
the remaining subset was used for validating the model’s 
performance. This process was repeated two times, with 
each subset used exactly once as validation data, and the 
average performance metric was used to evaluate the 
model’s performance.

Preprocessing of input images
The usefulness of CNN models lies in their ability to 
identify the hidden characteristics of various datasets 

(Garcia-Garcia et al. 2017; He et al. 2015; Kim et al. 2022). 
To enhance this capability, data preprocessing is recom-
mended for preparing high-quality input datasets (Luo 
et al. 2021). Preprocessing involves reducing unnecessary 
data dimensions with meaningless features that are irrel-
evant to the semantic classification of the input dataset. 
To preprocess the image dataset, we independently used 
histogram stretching and histogram equalization to cre-
ate a high-contrast image dataset exhibiting a clear pore 
structure in the secondary cathode particles (Fig. 2) (Oli-
ver. 1998).

Histogram stretching is a linear transformation tech-
nique that changes the histogram of an image to be 
evenly distributed over the grayscale (Im et al. 2011). The 
histogram stretching formula can be expressed as 
g
(
x, y

)
=

f (x,y)−f min

f max−f min ∗ 2bpp , where f x, y  denotes the 
pixel value, f max denotes the maximum value, f min 
denotes the minimum value, and bpp denotes the bit per 
pixel. After measuring the f max and f min values of the 
pixels in the initial image, the brightness and contrast of 
the image can be improved by adjusting each pixel value 
using the histogram stretching equation (Fig.  2a and b) 
(Luo et al. 2021).

Subsequent treatment based on histogram equalization 
can further improve the image contrast, which effectively 
reduces the difference in magnitude among all pixels in 
the pore region with dark contrast (Abdullah-Al-Wadud 
et  al. 2007). The histogram equalization is described as 
h(v) = round

(
cdf(v)−cdfmin
(M∗N )−cdfmin

∗ (L− 1)
)
 , where cdfmin 

Fig. 2 Input image dataset prepared for deep learning. a Example image array of original image dataset (256 × 256 pixels) obtained at different 
depths in the NCM secondary particle through SEM–FIB serial sectioning and postprocessing. The depth interval between each slice number 
is 15 nm. b, c Image datasets generated after histogram stretching and histogram equalization, respectively
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denotes the minimum cumulative function, M and N  
denote the numbers of rows and columns of pixels, 
respectively, and L denotes the number of gray levels. The 
contrast of the image dataset is substantially improved 
using the histogram equalization process (Fig. 2c).

CNN for feature segmentation
The SegNet model has been widely used as a CNN for 
binary feature segmentation (Badrinarayanan et al. 2017). 
Figure  3 illustrates the model structure. When input 
images of the training set are fed into the CNN model 
for learning, the model returns the predicted value, com-
pares the output with the ground truth data to evaluate 
loss (or accuracy), and tunes the weight and bias of fit-
ting to reduce the loss. Subsequently, using the images 
of the test session, the learned model returns the pre-
dicted values, and its performance is evaluated by com-
paring the values with the ground truth data. SegNet is a 

convolutional encoder–decoder model that is useful for 
segmentation. The architecture of the model is divided 
into an encoder and decoder, which is a type of feed-
forward neural network, in which the input and output 
convolution layers are symmetric (Fig.  4). The encoder 
extracts key elements by reducing the dimensions of the 
input data, and the decoder generates high-dimensional 
data based on the compressed information (Garcia-Gar-
cia et  al. 2017). The encoder performs downsampling, 
which includes convolution layers that generate a fea-
ture map and 2D max pooling layers (Fig. 4). A 3 × 3 fil-
ter was applied to the convolution layer, whereas a 2 × 2 
filter was applied to the 2D max pooling layers to form 
a feature map (Badrinarayanan et al. 2017). The decoder 
enables the convolution and upsampling of the 2D lay-
ers to reconstruct a higher-dimensional output from the 
previous feature map at each step. The final layer after 
decoding defines a softmax layer for classification, and 

Fig. 3 Deep learning workflow structure of the convolutional neural network (CNN)‑based image segmentation of pore features in the SEM image 
of the NCM particle

Fig. 4 Detailed architecture of the CNN model used for the automated segmentation of pore features in SEM images
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the output image is normalized between zero and one 
(Simonyan and Zisserman 2014).

In the encoding part of the SegNet architecture, the 
low-dimensional feature extraction of the input images 
was performed using two 2D convolution and 2D max 
pooling layers. This downsampling process is repeated 
twice to reduce the dimensions of the input images. 
Subsequently, a dense layer was added to arrange the 
low-dimensional features (Fig.  4). To decode the fea-
ture information and reconstruct the output image, 2D 
upsampling and 2D convolution layers were designed 
symmetrically (Fig. 4). In the last layer of the classifica-
tion model, a softmax layer was added to categorize the 
output features into two labels (Badrinarayanan et  al. 
2017), which represent pores and grains. Adam was 
used to optimize the learning efficiency of the model 
(Kingma and Adam 2014), and binary cross-entropy 
was used to estimate learning loss. The callback func-
tion of ReduceLROnPlateau was used to dynamically 
reduce the learning rate when a metric has stopped 
improving. As parameters used in the callback, the 
function of ‘monitor’ was set to ‘val_loss’ with a fac-
tor of 0.2, and the values of patience and verbose were 
set to 10 and 1, respectively, in ‘auto’ mode with the 
minimum learning rate (min_lr) of 1 ×  10–5. The model 
was trained for 100 epochs with a batch size of 32. The 
total number of parameters used in this process was 
331,137. The model’s performance was evaluated by 

comparing the predicted data with the ground truth 
results. The language used for writing code in this study 
was Python, and the deep learning workflow was con-
structed using Keras.

Results and discussion
Figure  5 shows the performance of the model based on 
the training and test datasets as a function of the epochs. 
Accuracy, F1 score, and mean squared error (MSE) are 
the indicators considered for evaluating the classifica-
tion performance of a CNN model. The model trained 
for 100 epochs exhibits an accuracy of > 97% for feature 
segmentation regarding pore detection on the input data-
sets with suppressed overfitting (Additional file  1; Fig. 
S2). The results shown in Fig.  5 confirm that the learn-
ing efficiency of the model improves when histogram 
equalization data are used for training and testing. The 
learning accuracy of the model with the equalization data 
is saturated at a bit earlier epoch than the case with the 
unprocessed dataset. However, the model with the histo-
gram stretching dataset requires 20 more epochs at least 
for learning stabilization showing the same performance 
(> 97% in accuracy and F1 score) as the model with the 
histogram equalization dataset (Fig. 5). Therefore, histo-
gram equalization for preparing the input image dataset 
is an advisable strategy for the reliable learning of the 
CNN model for segmentation tasks.

Fig. 5 Training and test scores of the CNN‑based pore segmentation model in terms of (a, b) accuracy, (c, d) F1 score, and (e, f) mean squared error 
as a function of learning epoch
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Factors for assessing model performance can be moni-
tored based on the relationship between the predicted out-
put and ground truth data. As listed in Table  1, these 
relationships can be classified into four types. When the 
model’s prediction corresponds to the actual result, this 
case is defined as a true positive (TP). Meanwhile, when the 
model indicates that the predicted answer is true despite 
the actual value being false, this case is categorized as a 
false positive (FP). Similarly, the opposite two cases are cat-
egorized as false negative (FN) and true negative (TN) 
(Table 1). Given that the TP and TN cases exist, the accu-
racy of the model’s prediction can be intuitively measured 
using the following expression: (
Accuracy

)
=

TP+TN
TP+FN+FP+TN . We measured the F1 score to 

estimate the model’s performance. The F1 score is defined 
as the harmonic average of the precision and recall values, 

i.e., (F1 score) = 2∗

(
1

1
Precision+

1
Recall

)
= 2∗

(
Precision∗Recall
Precision+Recall

)
 . 

By comparing the pixel values of the actual image with 
those of the predicted image, the MSE value was obtained 
as the average of the square of the errors, i.e., 
MSE =

1
n

n∑
i=1

(
Ŷi − Yi

)2
 , where Yi and Ŷi are the predicted 

value and the actual value, respectively.
The estimated classification accuracy, F1 score, and 

MSE values obtained using the proposed model are 
listed in Table  2. The results indicate that the estab-
lished CNN model can reliably predict the output image 
at an accuracy of > 97% after it is sufficiently trained for 
up to 100 epochs. Figure  6 shows the model perfor-
mance regarding the segmentation of pores in NCM 
secondary particles. Figure  6a shows the input images 
(top) and ground-truth images of the pores (bottom) 

prepared based on human inputs. The predicted results 
obtained using the CNN model have better agreed with 
the ground truth results (Fig. 6b) compared to the pro-
cess with the commonly used digital threshold (Fig. 6c), 
demonstrating that the model is successfully trained 
for pore segmentation based on the SEM image dataset 
of the NCM secondary particle. Owing to the effect of 
preprocessing the input image data for learning accu-
racy, the model performs slightly better when the input 
image is processed based on stretching and equaliza-
tion before being fed to the model for training and test-
ing (Table  2 and Fig.  6b). We note that the predicted 
result by the CNN model with unprocessed image data-
set shows poor performance for pore segmentation 
(Additional file 1: Fig. S3).

To assess the geometric parameters of the NCM sec-
ondary particles with respect to the different 2D seg-
mentation approaches (ground truth measurement, 
digital threshold process, and CNN-assisted process 
combined with histogram stretching or equalization), 
we reconstructed the 3D pore volumes using the 2D 
segmentation image datasets prepared by each method. 
Figure  7a shows the reconstructed pore volumes 
obtained from this perspective. By analyzing the 3D 
pore volumes, the total porosity (Pt), total pore volume 
(Vt), and total pore surface area (St) were obtained for 
each process, as shown in Fig. 7b. From the results, we 
can see that the CNN-assisted pore segmentation after 
the preprocessing of histogram equalization shows the 
best fit to the ground truth data. However, the results 
based on the digital threshold process and CNN-
assisted process combined with histogram stretching 
show that the estimation of geometrical parameters can 
be exaggerated by several percentages. This comparison 
suggests that the CNN-based automated segmenta-
tion process combined with the histogram equalization 
treatment of the SEM images allows a reliable estima-
tion of the geometrical pore characteristics of NCM 
cathode particles close to the ground truth result. Con-
sidering the high accuracy of the CNN model (> 97%) 
for binary segmentation, we expect that the algorithm 

Table 1 Comparison between the classification and actual 
results

Actual result

Classification result True False

True True Positive False Positive

False False Negative True Negative

Table 2 Test results of the CNN‑based segmentation model’s performances combined with different preprocessing methods

Training set Test set

Accuracy F1 score Mean squared error Accuracy F1 score Mean 
squared 
error

Raw image 0.9794 0.997 0.0019 0.9742 0.9935 0.0062

Stretching 0.9801 0.998 0.00098 0.974 0.9932 0.007

Equalization 0.982 0.998 0.00074 0.9756 0.9946 0.0049
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established in this study can be used as an effective 
analytical tool to address the segmentation problems 
arising from other polycrystalline materials with inter-
nal pores. The source code (written by Python) of the 
trained model for pore structures in NCM secondary 
particles is available in the public domain of GitHub 
(Lee 2023).

Conclusions
We demonstrated that the proposed CNN model reliably 
performs binary segmentation for porous materials, e.g., 
NCM electrode materials, without human intervention. 
The model automatically expedited the segmentation 
process for a large dataset of SEM images to evaluate the 

porosity of materials and exhibited high accuracy (> 97%) 
by systematically comparing performance evaluation 
factors as a function of the training epoch. High per-
formance was assured when the input images were pre-
processed using hysteresis thresholding and histogram 
equalization, thereby indicating the importance of the 
optimized preprocessing of the input dataset for reliable 
functioning of the established CNN model. The meas-
ured porosity of the material using the CNN model was 
well consistent with the ground truth 3D electron tomog-
raphy result. This implies that the labor-intensive effort 
required for pore structure analysis can be substantially 
reduced to obtain equivalent information on the porosity 
of polycrystalline porous materials.

Fig. 6 Arrays of a the original BSE images and corresponding ground truth input images prepared for the training and performance test 
of the CNN‑based segmentation model. b The corresponding output image arrays generated by the CNN‑based segmentation model combined 
with the histogram stretching and histogram equalization processes. c The corresponding output image arrays generated using the digital 
threshold process implemented in Avizo software, which has been used for tomographic volume reconstruction
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Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40543‑ 023‑ 00407‑z.

Additional file 1: Fig. S1. Effect of FFT and Gaussian filters for preparing 
input images. a Cross‑sectional backscatter electron (BSE) SEM image 
of an NCM secondary particle as acquired without filtering. The vertical 
stripe‑type contrast artifacts are formed due to the curtaining effect. b 
FFT filtered BSE SEM image to remove vertical stripe artifacts. c Prepared 
input image after removing statistical noise background by Gaussian 
filter for the FFT filtered image. Fig. S2. Application of the trained model 
to a different NCA secondary particle for detection and segmentation 
performance for irregular shape pores. This extra data supports that 
the accuracy of >97% for feature segmentation is well maintained, 
thus suggesting the model’s generalizability. Fig. S3. Comparison of 
pore segmentation performance between human‑driven process with 
preprocessed image dataset and CNN‑assisted process with unprocessed 
image dataset. Without preprocessing, false‑positive detection in feature 
segmentation was notably increased for using the CNN‑assisted process. 
This result indicates the importance of preprocessing of input images for 
deep learning‑assisted pore segmentation.
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