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Abstract 

In biology, evolutionary conserved protein sequences show homologous physiological phenotypes in their struc‑
tures and functions. If the protein has a vital function, its sequence is usually conserved across the species. However, 
in highly conserved protein there still remains small differences across the species. Upon protein–protein interaction 
(PPI), it is observed that the conserved proteins can have different binding partners that are considered to be caused 
by the small sequence variations in a specific domain. Thyroglobulin (TG) is the most commonly found protein in the 
thyroid gland of vertebrates and serves as the precursor of the thyroid hormones, tetraiodothyronine and triiodo‑
thyronine that are critical for growth, development and metabolism in vertebrates. In this study, we comparatively 
analyzed the sequences and structures of the highly conserved regions of TG from two different species in relation 
to their PPIs. In order to do so, we employed SIM for sequence alignment, STRING for PPI analysis and cryo-electron 
microscopy for 3D structural analysis. Our Cryo-EM model for TG of Bos taurus determined at 7.1 Å resolution fitted 
well with the previously published Cryo-EM model for Homo sapiens TG. By demonstrating overall structural homol‑
ogy between TGs from different species, we address that local amino acid sequence variation is sufficient to alter PPIs 
specific for the organism. We predict that our result will contribute to a deeper understanding in the evolutionary 
pattern applicable to many other proteins.
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Introduction
In evolutionary biology, protein sequence conservations 
are commonly found in all species. Conservation proves 
that a primeval sequence has been preserved through 
natural evolution. For example, there are several con-
served sequences such as the ribonucleic acid (RNA) 
components of ribosomes in all living organisms, the 
homeobox sequences in eukaryotes transfer-messenger 
RNA (tmRNA) in bacteria and so on (Marmur et al. 1963; 

Sanger 1949). In addition, there is a linkage between 
conservation and length of the primary structure of pro-
tein. The molecular function of a protein predominantly 
determines its sequence length, and the variability of the 
lengths reflects the multiplicity of specialized function 
roles for these proteins (Knight et al. 2001). Lipman et al. 
have previously published the study of this hypothesis by 
demonstrating differences in protein length in correla-
tion with the sequence conservation in all studied organ-
isms. The conserved proteins are commonly longer than 
the less conserved proteins, and the distribution ranges 
of the length for the poorly conserved proteins compara-
tively have a smaller pool (Lipman et al. 2002). The study 
of sequence conservation is the basic root in the entire 
fields of genomics, proteomics, evolutionary biology, 
phylogenetics, bioinformatics and structural biology.
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Protein–protein interaction (PPI) is one of the most 
significant part of biological study. PPI involves physical 
interactions between several protein molecules caused by 
biochemical events through communications that carry 
electrostatic forces, hydrogen bonding and the hydropho-
bic interaction, and it mediates a number of direct con-
tacts between amino acid residues that occur in a specific 
biomolecule (De Las Rivas and Fontanillo 2010; Makino 
and Gojobori 2007). Thus, PPI studies of a specific pro-
tein can not only help understand its regulatory mecha-
nism of intracellular functions, but can also provide a 
starting point for the predictions of other functions and 
related biological pathways (Ding and Kihara 2019). Most 
proteins hardly act alone due to the regulation mecha-
nism. Thus, many molecular regulations in the cell are 
accomplished by the various proteins assembled by their 
PPIs. Moreover, disorders in these physiological interac-
tions are the trigger of aggregation-related diseases, such 
as Creutzfeldt–Jakob and Alzheimer’s disease (Li et  al. 
2019; Schmitz et  al. 2020). Therefore, it is important to 
investigate the PPI as a key clue to understand the physi-
ological mechanism of the living things.

Thyroglobulin (TG) is a 660  kDa glycoprotein that 
exists as homodimers. It is one of the most common 
protein in the thyroid gland of vertebrates and serves as 
the precursor of the thyroid hormones, tetraiodothy-
ronine (T4) and triiodothyronine (T3) that are critical 
for growth, development and metabolism in vertebrates 
(Franc et al. 1990; Malthiery and Lissitzky 1987). In the 
thyroid gland, the formation of these hormones from TG 
occurs through iodination and coupling of pairs of tyros-
ine residues terminated through TG proteolysis (Citte-
rio et al. 2018). TG is a most highly conserved protein in 
all vertebrates including the Homo sapiens, Bos taurus, 
Mus musculus, Canis familiaris, Sus scrofa, Danio rerio 
and many more (Belkadi et al. 2012; Holzer et al. 2016). 
Therefore, TG is mainly studied for evolutionary research 
due to its extremely conserved nature to understand 
functional and structural diversity. Decades ago, Yang 
et  al. compared the glycosylation of TG between Homo 
sapiens and Bos taurus which is a main process for the 
function of this protein (Yang et  al. 1996). In addition, 
Molina et al. studied the type-1 repeat from human TG, 
a cystein-rich module, by comparing the differences 
among homologous protein families (Molina et al. 1996).

Here, we comparatively analyzed the differences in the 
sequences and structures in the PPI action of the highly 
conserved TGs from Homo sapiens and Bos taurus. In 
order to do so, we employed the SIM alignment tool for 
sequence alignment (Huang et  al. 1990), STRING data-
base (Szklarczyk et al. 2019) for PPI analysis to find dif-
ference in interaction. We also performed cryo-electron 
microscopy (Cryo-EM) for 3D structural analysis to 

investigate structural variance caused by poorly con-
served amino acid sequence. Our results exemplify that 
local amino acid sequence variations are sufficient for 
alteration of PPIs despite overall structural homology 
(Coscia et al. 2020).

Materials and methods
Sequence analysis and PPI map
Amino acids sequences of human (Homo sapiens, Uni-
Prot-P01266) and bovine (Bos taurus, UniProt-P01267) 
TG were adopted from UniProt database (UniProt 
2021). Protein sequence alignment was performed using 
the alignment tool SIM (Huang 1990) and visualized by 
LANVIEW (Duret et  al. 1996), a graphical viewer soft-
ware for pairwise alignments. Statistical procedures were 
performed using SigmaPlot (Systat Software, San Jose, 
CA, US). The STRING (Szklarczyk 2019) Genes/Pro-
teins database was used to construct the PPI networks 
of human and bovine TG. All the interactions between 
them were derived from previous information in curated 
databases at high level of average local clustering coeffi-
cient (human TG, 0.906; bovine TG, 0.777).

Electrostatic charge distribution analysis
For calculating electrostatic charge distribution of 
human and bovine TGs, a human TG atomic model was 
adopted from previously published paper (Coscia 2020) 
and an atomic model of bovine TG was constructed by 
SWISS-MODEL (Schwede et al. 2003), a server for tem-
plate-based automated modeling of three-dimensional 
(3D) protein structures. The Poisson–Boltzmann equa-
tion solver program CHARMM-GUI (Jo et al. 2008) was 
employed to calculate the electrostatic distribution of 
each TG. The measured surface representation of each 
TGs was visualized using PyMOL (The PyMOL Molecu-
lar Graphics System, version 2.0 Schrödinger, LLC).

Transmission electron microscopy and single‑particle 
image processing of bovine TG
Cryo-EM was performed using purified bovine TG pre-
pared from a protein stock (T9145; Sigma-Aldrich, USA). 
The stock protein was dissolved in phosphate-buff-
ered saline (10  mM phosphate buffer, 2.7  mM KCl, and 
137  mM NaCl; pH 7.4) and diluted with 20  mM Tris–
HCl buffer (pH 7.5) to a final concentration of 1 mg/ml. 
The frozen-hydrated specimen was prepared on glow-
discharged Quantifoil R 1.2/1.3 holey carbon EM grids 
(Quantifoil, Grosslo ̈ bichau, Germany) using a Vitrobot 
Mark IV (FEI, US; 5 s blotting time and 100% humidity at 
4 °C) (Kwon et al. 2019). Automated data collection was 
performed using EPU software (FEI, US) by Titan Krios 
G2 transmission electron microscope (FEI, US) operated 
at 300 kV with a K2 direct electron detector (Gatan, USA) 
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(instrumentation installed at Leiden University, Leiden, 
Netherlands). Each micrograph was recorded with a total 
dose of 51.02 e- Å-2 per micrographs and a defocus range 
from 1.5 to 3 μm at a 1.4 Å pixel size (nominal magnifi-
cation of 59,000). After estimating the contrast transfer 
function (CTF) using Gctf (Zhang 2016) without motion 
correction, 1,038 micrographs with values of maximum 
resolution better than 5 Å resolution and defocus lower 
than 3  μm were selected for further processing. After 
performing 5 rounds of 2D classification, the best-look-
ing 29,686 particles and 25 class averages were selected as 
judged by visual inspection. For reconstruction of bovine 
TG, initial reference model with C2 symmetry imposi-
tion was built from 3,243 particles that belong in the best 
2D class averages. A total of 29, 686 particles were then 
selected from the best matched classes with a reference 
model and were subjected to 3D auto-refinement with C2 
symmetry imposition. The final model was refined with a 
soft-edged mask and was sharpened with a -288.384 Å-2 
B-factor. RELION-2.1 (Kimanius et  al. 2016) package 
was employed to whole image processing procedures. 
The resolution of the final Cryo-EM reconstruction was 
estimated by Fourier shell correlation (FSC) between the 
two halves of the dataset using the FSC validation server 
of the Electron Microscopy Data Bank (EMDB). The 
local resolution was calculated with RELION-2.1. The 
final Cryo-EM model of bovine TG was deposited in the 
EMDB (EMD-30876) (Additional file  1: Table  1). UCSF 
Chimera (Pettersen et  al. 2004) was used to superpose 
human TG atomic model (PDB: 6SCJ) (Coscia 2020) into 
bovine TG model and visual inspection. Image process-
ing was performed using computation resources at Kang-
won Center for Systems Imaging.

Results and discussion
Protein interaction networks of human and bovine TG
First, we conducted a sequence alignment to confirm an 
evolutional variance between the protein sequences of 
human and bovine TG (Fig.  1. A and Additional file  2: 
Fig. 1). As expected, following the previous research, the 
two proteins were observed to have high retention rates, 
with approximately 78% of the conserved sequences 
except for the cholinesterase-like (ChEL) domain of 
C-terminal (Fig. 1A). ChEL domain has a Cys-rich mod-
ule that secretes TG in thyroid hormonogenesis in all 
vertebrates (Lee et  al. 2008). In addition, several pub-
lished papers report that hypothyroidism in human and 
rodents are caused by mutations in the ChEL domain 
(Hishinuma et  al. 2000; Kim et  al. 2000). Therefore, the 
ChEL domain is a very important part of TG and is highly 
conserved in all species of TG. We have identified 80% of 
sequence homology between humans and bovine TGs. 
Surprisingly, the residues that are known to be involved 

in the electron acceptor/donor of the human TG during 
the hormonogenesis maturation have remained almost 
unchanged. Next, we used the sequence alignment 
results to understand more about the changed amino 
acid residues and how much they have changed in each 
domain (Coscia 2020). The percentage of residues that 
have substituted were NTD-22%, Core-24%, Flap-29%, 
Arm-22%, and CTD-20%, with the most changed domain 
being Flap and the least being CTD. Simultaneously, 
Among the substituted amino acids, the percentages 
of the changed electrostatic properties of residues were 
identified as NTD-67%, Core-63%, Flap-52%, Arm-58%, 
and CTD-63% (Fig.  1B and Additional file  3: Table  2). 
These changes in residues, especially in the change of 
electrostatic properties, are currently not understood 
and are expected to result from structural and functional 
differences for interaction with other proteins, requiring 
more detailed study at each domain level. Further, when 
we confirmed the results of the PPI network analysis, it 
was observed that the two proteins have a slightly differ-
ent binding partner even though they have highly con-
served properties (Fig. 1C and D). The PPI map of human 
TG shows interaction with calcitonin-related polypeptide 
alpha (CALCA), thyroid peroxidase (TPO) and sodium/
iodide cotransporter (SLC5A5), which are not in the 
map of bovine TG. On the other hand, interactions with 
albumin (ALB), asialoglycoprotein receptor2 (ASGR2) 
and transthyretin (TTR) were identified in bovine TG. 
Following this result, the different interaction tendency 
between two highly conserved proteins is prospected 
to evolutionary distinct properties for physiological 
activity, and this difference is thought to be accompa-
nied by changes in the properties of amino acid residue 
sequences.

The structure model of bovine TG
Next, we reconstructed a 3D model of bovine TG using 
Cryo-EM to demonstrate structural similarity between 
TGs across species despite of different PPI tendency 
based on sequence analysis. Our Cryo-EM map was 
reconstructed with 7.1 Å resolution from 29,686 parti-
cles, and we estimated the local resolution by RELION 
(Kimanius 2016) (Additional file  4: Fig.  2 and Addi-
tional file  1: Table  1). To compare with the previously 
reported 3D structure of human TG (PDB: 6SCJ) (Cos-
cia 2020), these maps were superposed (Fig.  2). First, 
the overall structural difference could not be identi-
fied at given resolutions of the bovine TG (7.1 Å, blue 
mesh) and the human TG (3.6 Å, green) (Fig.  2C). 3D 
structures of the two proteins, as expected by the high 
sequence homology, were similar, especially in rigid 
regions. It is also predicted that the function of the pro-
teins associated with the identical structural features 
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will have the same physiological characteristics across 
the species (Lee et al. 2007). Therefore, it is speculated 
that sequence variations of amino acid residues in the 
same binding sites are used for interaction with dif-
ferent binding partners for distinct molecular func-
tions although no significant structural differences are 
noticeable (Johansson-Akhe et  al. 2019). In addition, 
we fitted the atomic model of human TG into our Cryo-
EM map of bovine TG because of insufficient map reso-
lution for direct atomic model refinement (Figs. 2D and 
3). The result clearly indicated that there was no large 
structural difference.

The effects of amino acid substitutions on PPI
First, an electrostatic surface of two TGs was estab-
lished to identify the differences, such as hydropho-
bicity and polarity of the amino acids, known to be 
involved in protein molecular interaction (Fig.  4) 
(Brock et al. 2007). The result demonstrates that gen-
eral tendency of the surface electrostatic potential dis-
tributions is almost similar for both proteins. However, 
we observed small local variations. In addition, when 
we examined the sequence alignment result, there 
were a few areas where amino acid properties changed, 
accompanied by differences in more than 3 consecutive 

Fig. 1  Comparison of the composed amino acids in individual domains and PPI maps in each protein. (A) Graphical observation of the sequence 
aliment result of human and bovine TG. Result Shows same similarity position with Fig. 1. B Differences in amino acid composition of individual 
domains between two species. Red bar showing the different percentages in whole amino acids of each domain. Blue bar showing the different 
amino acids percentage which contains altered properties of specific residues. The distinct interaction tendency of human TG (C) and bovine TG (D)
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amino acid residues (Additional file 3: Table 2). Simul-
taneously, most of the changed residues were located 
in the loop region in each domains known as an essen-
tial role in protein–protein binding (Shehu and Kav-
raki 2012). Figure  5 shows local distribution of the 
amino acids with electrostatic residues with alternat-
ing charge properties which are predominantly located 
in the edge loop region in individual domains. In addi-
tion, due to the relatively low resolution of reconstruc-
tion result in this paper, we compared and verified the 

3D map of bovine TG, which was recently published 
as high resolution, with our result and human TG 
map, and confirmed that there was no structural het-
erogeneity (Additional file 5: Fig. 4) (Kim et al. 2021). 
Therefore, considering the structural and physiologi-
cal feature of both TGs, we propose that changes in 
the electrostatic properties of these small number of 
amino acids, especially for exposed loop regions, could 
affect PPI.

Fig. 2  Comparison of Cryo-EM maps of bovine and human TG. Refined Cryo-EM map of (A) bovine TG and (B) human TG (EMD-10141). (C) Overall 
deviations between the reconstruction map from bovine (cyan) and human (green) TG density maps (mesh representation). (D) The human TG 
atomic model (PDB: 6SCJ) fitted into the 5.1 Å bovine TG Cryo-EM reconstruction map with C2 symmetry
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Conclusion
In this study, we focused on the differences between 
human and bovine TGs with respect to their Cryo-EM 
structures, electrostatic potential distribution, compara-
tive sequence analysis and each respective PPIs. The 
results demonstrate the notion that despite the homol-
ogy between the structures, partial changes in amino 
acid residues and corresponding changes in local envi-
ronment can affect PPIs, ultimately leading to overall 
physiological regulation at molecular and cellular lev-
els. We expect our study will not only provide a further 
understanding of TG, but also suggest a treatment strat-
egy against the diseases caused by abnormal PPI activa-
tions, and also may facilitate evolutionary predictions 
of the cause of the PPI differences among homologous 
proteins.

Fig. 3  Superposition of TG atomic model from human onto the bovine Cryo-EM map. (A) Superposed human TG atomic model in the bovine TG 
EM model, and (B) the surface representation of the human TG (PDB: 6SCJ). TG domains are colored by NTD: red. Core: orange. Flap: yellow. Arm: 
green. CTD: blue

Fig. 4  Electrostatic potential surface map comparison of human 
and bovine TG. Calculated electrostatic potential maps from 
CHARMM-GUI of (A) human TG and (B) bovine TG by PyMOL. Blue 
color represents positive potential, white color represents neutral 
potential and red color represents negative potential. The potential 
scale used ranged from −2.000 K B T/e (red) to + 2.000 K B T/e (blue)

Fig. 5  Position of amino acid residues changed in human and bovine TG. (A–E) Amino acid residue distribution in the edge loop region of each 
domain containing continuously variable residues of electrostatic properties remarked in Additional file 3: Table 2, based on sequence alignment 
between human TG to bovine TG
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was refined with C2 symmetry imposition and sharpened with a B factor 
-288.384 Å2 (Scale bars: right, 50 nm; left, 20 nm;). (B) A montage of 
orthogonal views of the cryo-EM map (C) Fourier shell correlation (FSC) 
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distribution plot for the final reconstruction.
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maps of bovine (EMD-24181) and human TG (EMD-10141). Reconstructed 
cryo-EM map of (A; EMD-30876) bovine TG from this paper (cyan) and (B) 
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