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Abstract 

The suitability of Hansen solubility parameters as descriptors for modelling analyte retention during reversed-phase 
chromatographic experiments was investigated. A novel theoretical model using Hansen solubility parameters as 
the basis for a complete mathematical derivation of the model was developed. The theoretical model also includes 
the cavitation volumes of the analytes, which were calculated using ab initio density functional theory methods. A 
set of three homologous phthalates was used for experimental data collection and subsequent model construction. 
The training error and the generalization error of the model were additionally evaluated using a range of chemically 
diverse analytes. Statistical evaluation of the results revealed that the model is suitable for analyte retention predic-
tion but is limited to the analytes used in the model construction. Therefore, the resulting theoretical model cannot 
be easily generalized. A retention anomaly attributed to the column temperature and mobile phase composition was 
experimentally observed and mathematically investigated.
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Introduction
Considerable research interest has been devoted to 
understanding the principal mechanism of reversed-
phase (RP) chromatographic separations, which has not 
been fully elucidated due to its complexity and a mul-
titude of parameters that greatly affect the chromato-
graphic experiment (Poole 2019). Poole (2015) described 
a qualitative interphase model which aimed at simpli-
fying the complexity of the retention mechanism. He 
described the active chromatographic separatory area 
inside the analytical column and segmented it into three 
main domains: the silica particle surface, the stationary 
phase (SP), and the bulk mobile phase (MP). At a con-
stant composition of the MP, the SP becomes solvated. 
Analytes approaching from the bulk MP can interact with 

the SP in a combination of two retention mechanisms: a 
partition and an adsorption mechanism (Poole 2019, 
2015). The predominant mechanism, by which retention 
of the analyte occurs, is a function of MP composition, 
column temperature, condition and age of the SP, and the 
flow rate (Vailaya 2005). From a modelling perspective, 
this complexity presents the greatest challenge, as certain 
simplifications are unavoidable.

Retention prediction and modelling in chromatography
Haddad et  al. (2021) recently published an overview of 
modern approaches to modelling chromatographic reten-
tion data. They can be divided into two main classes: statis-
tical and physicochemical modelling. Statistical approaches 
include quantitative structure-retention relationships 
(QSRR) (Amos et  al. 2018) and design of experiments 
(DoE) (Sahu et  al. 2018), while, physicochemical models 
encompass solvatophobic models (Horváth et  al. 1976; 
Moldoveanu and David 2015), solvent strength models 
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(Neue and Kuss 2010; Tyteca and Desmet 2015), and lin-
ear free-energy relationships (LFER) (Vailaya 2005), which 
can be further divided into exothermodynamic relations 
(Ovčačíková et al. 2016), hydrophobic subtraction models 
(Snyder et al. 2004) and solvation parameter models (Abra-
ham et al. 2004).

Gilar et  al. (2020) previously compared the nonlinear 
and linear solvent strength models and found that the lin-
ear model can serve as an estimate for the prediction of 
analyte retention. The nonlinear model was implemented 
to try to correct the experimentally observed nonlinear 
concave behaviour in the ln ki versus solvent strength 
plots. The origin of this nonlinear behaviour in RP liquid 
chromatography is still not fully understood.

The analytes used in modelling are usually divided 
into two sets: a training set containing analytes that are 
directly integrated into the model, and a test set with ana-
lytes that are not used to construct the model. The latter 
serve as data, used to evaluate the generalization error of 
a model. The training error is determined using the train-
ing set. Together, these two metrics provide evaluation 
about the performance of the model. An ideal theoretical 
model has a low training error for analytes used in train-
ing the model and a low degree of generalization error 
for analytes added to the model for testing (Spears et al. 
2018).

Solubility parameters
Hansen solubility parameters (HSP) are empirical ther-
modynamic parameters that aim to quantify the notion 
of “like dissolves like” (Hansen 1967). The core idea of 
HSP is summarized in Eq.  1, where a clear distinction 
of three basic molecular interaction types can be seen: 
dispersion interactions (d), polar interactions (p), and 
hydrogen bonding interactions (h).

The sum of the three partial solubility parameters rep-
resents the total solubility parameter δ , which is defined 
as the square root of the cohesion energy density i.e. 
the energy originating from intermolecular interactions 
divided by the molar volume, Eq. 2, (Hildebrand 1949).

Hansen distance is a numerical value that quantifies the 
thermodynamic similarity of two analytes based on the 
strength of the constituent interaction types. A Hansen 
distance for two analytes can be calculated from their 
respective HSP, Eq. 3.

(1)δ2 = 4δ2d + δ2p + δ2h

(2)δ =

√

Ecoh.
Vm

(3)�i,j = 4
(

δd,i − δd,j
)2

+
(

δp,i − δp,j
)2

+
(

δh,i − δh,j
)2

HSP’s were developed mainly for predicting the solubil-
ity of paints, resins, and polymer components (Hansen 
1967). They can be used in the development and study 
of the mechanical properties of thermoplastic-lignin 
composites (Zhao et al. 2018b, a). Their use in the phar-
maceutical industry includes predicting the solubility 
of pharmaceutical excipients (Adamska et  al. 2007) and 
the compatibility of biopolymers (Adamska et  al. 2016). 
Sánchez-Camargo et  al. have reviewed the use of HPS 
to predict solubilities for the selection of more environ-
mentally acceptable extraction solvents (Sánchez-Cama-
rgo et al. 2019). The work of Schoenmakers et al. (1982), 
Schoenmakers and de Galan (1981) shows that there is a 
mathematical relationship between the solubility param-
eter and the chromatographic activity coefficients that 
allows a theoretical derivation of retention as a function 
of solubility parameters for all analytes and phases in 
chromatographic separations.

Aim of the study
The aim of this study is twofold. First, to formally derive 
and investigate a novel LFER physicochemical model for 
modelling and predicting RP chromatographic separa-
tions based on Hansen solubility parameters using the 
experimental retention data obtained with a series of 
three homologous phthalates. Secondly, to investigate the 
training error and generalization error of the model using 
a retention information dataset of chemically different 
analytes that have a similar aromatic structural compo-
nent with different functional groups, in order to evalu-
ate the model as a tool for routine retention prediction of 
analytes.

Results and discussion
Derivation of the model equation
The primary objective of the study is to develop and 
provide a detailed mathematical and theoretical deriva-
tion of the model. The model derivation begins with the 
mathematical treatment of retention equilibria occurring 
during RP chromatographic separations. After the ana-
lyte, denoted by the index i , is introduced into the MP, 
the dynamic equilibrium between the activities of the 
analyte, corresponding to both phases, denoted by S for 
the SP and M for the MP, is formed, Eq. 4.

The dynamic equilibrium can be described by its equilib-
rium constant, Eq. 5.

The retention factor is a function of the chromatographic 
equilibrium constant, Eq. 6.

(4)aS,i ⇋ aM,i

(5)Ki =
aM,i

aS ,i
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Combining Eqs.  5 and 6, with the formal definition for 
activity being the product of the molar concentration and 
the activity coefficient, results in Eq. 7.

Schoenmakers et al. (1982), Schoenmakers and de Galan 
(1981) have previously related the chromatographic 
activity coefficient γi with solubility parameters δ , Eq. 8, 
with the subscript f indicating the phase.

Combination of Eqs.  7 and 8 and replacement of the 
molar volume and the universal gas constant with the 
cavitation volume and Boltzmann constant, due to the 
theoretical treatment of single molecules during the DFT 
cavitation volume calculations, results in

and after simplification

The natural logarithm of ki is presented in Eq. 9.

Then Hansen solubility parameters as Hansen distances 
are introduced

each encompassing the thermodynamic similarity 
between the analyte and the chromatographic phase. The 
Hansen distance for the analyte and SP is trivial to calcu-
late, using the formal definition, Eq. 10.
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nS
nM

(8)ln γf ,i =
Vm,i

RT ·
(

δi − δf
)2

ki =
exp

(

Vκ ,i

kBT
· (δi − δM)2

)

exp
(

Vκ ,i

kBT
· (δi − δS)

2
) ·

nS

nM

ki = exp

(

Vκ ,i

kBT
·

(

(δi − δM)2 − (δi − δS)
2
)

)

·
nS

nM
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nM

�M,i = (δi − δM)2
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2

(10)
�S,i = 4(δd,i − δd,S)

2
+ (δp,i − δp,S)

2
+ (δh,i − δh,S)

2

As the mobile phase is composed of a mixture of water 
and ACN, the corresponding MP-analyte Hansen dis-
tance is more complicated to calculate. It was assumed 
that HSP of mixtures are equal to the weighted sums of 
all HSP of pure substances. The molar fraction is used as 
a weight. Using this, the Hansen distance for the combi-
nation of analyte and the MP becomes Eq. 11.

The molar fraction of a bicomponent mixture adds up 
to unity, thus enabling the transformation of Eq. 11 into 
Eq. 12, where x denotes the molar fraction of ACN.

Expanding the equation and factoring out the molar frac-
tion, with further algebraical manipulation described in 
detail in the Additional file 1: section S1, leads to Eq. 13.

By combining the Hansen distances and Eq. 9, we arrive 
at Eq. 14.

Then the thermodynamic descriptor as Eq.  15 can be 
defined.

With the assumption that the second logarithm in Eq. 14 
is constant and by implementing the thermodynamic 
descriptor, the central theoretical model Eq. 16 is derived.

The model is based on Eq. 16—a simple linear regression, 
with regression coefficients denoted as β . The Hansen 
distances are calculated for each combination of SP, MP 
composition and analyte type, to obtain unique values 
of the thermodynamic descriptor. The analyte cavitation 
volume is calculated using theoretical DFT calculations, 
as described in the Materials and methods section. The 
model relates the theoretical thermodynamic descrip-
tor �i , which encompasses the variables of column 
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temperature, Hansen distances and analyte cavitation 
volumes, with the experimentally determined retention 
factor ln ki.

Statistical analysis and general observations of the model
Plotting the theoretical thermodynamic descriptor �i 
against the experimental ln ki reveals a pattern, which is 
presented in Fig. 1. Each point represents an average of 
three experimentally determined retention factors.

A clear distinction of the retention data of individ-
ual analytes (DMP, DEP and DBP) is observed includ-
ing the formation of two groups corresponding to the 
two studied SP (C8 and C18). Furthermore, differently 
oriented bands of individual analyte within the SP 
groups are observed. The results indicate the lack of 
generality of the thermodynamic descriptor �i for the 
complete description of structural variability as differ-
ent retention behaviours for the investigated analytes 
are observed. A cumulative model, which includes all 
the data points, is therefore not theoretically justified. 
Hence six separate linear regression models were cre-
ated, one for each analyte and the corresponding SP 
(singular models) and two cumulative models for all 
three analytes within the training set, but for separate 
SP.

Statistical data processing of the results is presented in 
Table  1 and complemented with regression coefficients 
presented in the Additional file 1: Table S1.

Residual analysis was performed to investigate their 
possible correlations, the results of which are presented 

Fig. 1  Plot of experimental ln ki values for the training set 
analytes (DMP, DEP, DBP) on two different SP (C8 and C18) vs. the 
thermodynamic descriptor �i

Table 1  Results of the statistical analysis of the theoretical 
model. p-values below 0.05 denote a statistical significance of 
the whole model

Model name Adj. R2 RSE p value

DMP-C8 0.9930 0.06535 1.267·10−15

DMP-C18 0.9566 0.1616 1.900·10−10

DEP-C8 0.9945 0.07056 2.758·10−16

DEP-C18 0.9811 0.1307 8.600·10−13

DBP-C8 0.9827 0.1809 4.738·10−13

DBP-C18 0.9851 0.1227 1.138·10−10

Cumulative-C8 0.8516 0.5270  < 2.2·10−16

Cumulative-C18 0.8743 0.4080  < 2.2·10−16

Fig. 2  Residual analysis of all models on SP C8. a DMP model, b DEP model, c DBP model, d cumulative model. The yellow line indicates the trend 
of the residuals
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in Fig.  2. The correlation between the residual val-
ues could be observed as a trend indicated by the yel-
low line, deviating from the horizontal zero line. The 
trends have the minima at data points correspond-
ing to the experiments at the MP composition of 60 
vol. % of ACN. The cumulative model (Fig. 2d) reveals 
even more pronounced residual correlations. Thus, 
according to these observations, the models are not 
linear, even though a positive p-value test suggests a 
linear relationship. The same trend was observed in the 
experiments with C18 SP.

Evaluation of the training error and generalization error
Regardless of the observed nonlinearity, the model’s 
training error was investigated. The predicted ln ki val-
ues were compared with experimentally gained values 
for DMP, DEP and DBP. Relative error and root mean 
squared error of prediction (RMSEP) of the retention 
time were calculated (Table 2).

The singular models that included only one analyte 
underestimated retention times, whereas the cumula-
tive model for all three analytes at selected SP overesti-
mated the retention times with larger deviations.

The evaluation of the generalization error with ana-
lytes from the test set revealed even greater differences 
(Table 3), which minimized the ability to predict reten-
tion times for analytes not used in the construction of 
the model.

The model can therefore hardly be generalized for 
retention prediction for chemically diverse analytes that 
are not intrinsically included in the model.

Comparison with solvent strength models
Unlike conventional retention modelling approaches 
that use isothermal experiments (Haddad et  al. 2021), 
the HSP-based model includes column temperature as 
an independent variable used to calculate the thermo-
dynamic descriptor. The residual standard error (RSE) 
value was calculated for each model (Fig. 3) to compare 
the novel theoretical model with conventional linear 
and nonlinear solvent strength models. All metrics of 
model quality and regression coefficients are presented 

Table 2  Evaluation of the model’s training error

Model name Rel. error/% RMSEP/min

DMP-C8 − 16.52 0.0709

DEP-C8 − 21.52 0.0893

DBP-C8 − 31.27 1.10

Cumulative-C8 78.09 2.77

Table 3  RMSEP values for the test set analytes

Analyte RMSEP/units of ln ki RMSEP/min

3-Methylbenzoic acid 4.177 65.17

2,4,6-Triiodophenol 1.473 4.362

Benzaldehyde 1.895 6.653

Vanillin 1.099 3.000

Fig. 3  A comparison of the RSE values for the investigated models. NLSS: nonlinear solvent strength model, LSS: linear solvent strength model, 
HSP_1T: HSP model with one temperature, HSP_3T: HSP model with three temperatures
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in Additional file  1: Tables S2–S4. Data obtained at 
25  °C were used, except for the model that included all 
three column temperatures. The solvent strength mod-
els achieve a lower RSE value for singular analyte mod-
els. Their RSE values for cumulative models are much 
higher than the values of the HSP model. The HSP model 
is therefore more suitable compared to the conventional 
solvent strength model when several analytes are mod-
elled simultaneously. The low values of RSE for singular 
solvent strength models and their higher values for the 
cumulative models could indicate a greater degree of 
overfitting of the retention data.

Exploring beyond the theoretical model
Nonlinearity was further investigated with multiple 
linear regression. In addition to the thermodynamic 
descriptor, the column temperature and the total adsorp-
tion of ACN on the C18 SP, based on data from Buntz 
et al. (Buntz et al. 2012), were used as independent vari-
ables. The nonlinear model is described by Eq. 17.

where A denotes the total molar adsorption of ACN on 
the SP. Since data for the total adsorption of ACN was 
only available for the C18 and not for the C8 SP, the 
models were built only for data collected with the corre-
sponding C18 column.

The results of the statistical analysis of the multi-
ple regression model, presented in Table  4, reveal an 
improvement in the statistical regression measure of 
quality, mainly as a decrease in the RSE values compared 
to values presented in Table 1. Regression coefficients are 
reported in the Additional file 1: Table S5. A consecutive 
statistical residual analysis (reported in the Additional 
file 1: Figure S1) revealed a nonlinear correlation of the 
residuals, indicating that the independent variables used 
in this model do not fully describe the chromatographic 
separation model, analogous to the theoretical model 
equation using a simple linear regression.

A statistical investigation of the experimental-only 
retention data provided insight into the observed non-
linear anomaly. The differences in retention between the 
three temperatures at a fixed MP composition are pre-
sented in Fig. 4. First, a general trend is observed in the 
effect of temperature and MP composition on retention. 
Increasing the ACN content in MP decreases the extent 
to which a change in temperature affects the ln ki for all 
three analytes in the training set, which is evident from 
the interpolated trends. Second, an anomalous retention 
is observed at 60 vol. % of ACN. The anomaly coincides 
with the minima observed in simple linear and multiple 

(17)ln ki = β0 + β1�i + β2A+ β3T

Table 4  Results of the statistical analysis of the multiple linear 
regression model. p values below 0.05 denote a statistical 
significance of the whole model

Model name Adj. R2 RSE p value

DMP-C18 0.9993 0.02099  < 2.2·10−16

DEP-C18 0.9985 0.03699 2.338·10−16

DBP-C18 0.9956 0.06698 2.694·10−10

Cumulative-C18 0.9551 0.2438  < 2.2·10−16

Fig. 4  The differences in the experimental retention data calculated at constant mobile phase compositions and three different temperatures on 
both investigated SP
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linear regression models. The trends for DMP and DEP 
are similar, while DBP shows a slightly different pat-
tern with increasing ACN content. The general trend is 
observed for both investigated SP.

Conclusion
In this paper, we present a novel theoretical model for 
predicting the retention of analytes in RP chromato-
graphic separations, together with a complete mathe-
matical derivation of the central model equation. To date, 
this is the first study to use Hansen solubility parameters 
as possible thermodynamic descriptors for predict-
ing retention behaviour in RP HPLC. We have found 
that Hansen solubility parameters cannot satisfactorily 
describe multiple chemical interactions that occur in 
RP chromatographic separations. The theoretical model 
combining HSP with theoretically derived solute cavita-
tion volumes is not applicable for the routine prediction 
of analyte retention times, due to an unfavourable train-
ing and generalization error. Moreover, the assumed lin-
ear relationship proves to be statistically unjustifiable. 
Incorporating the thermodynamics of dissolution and 
mixing, as suggested by Louwerse et al. (Louwerse et al. 
2017), could lead to the development of a more accurate 
HSP based theoretical model. Although, a comparison 
with conventional solvent strength models reveals that 
the HSP model is better at simultaneously predicting the 
retention of multiple analytes with only one regression 
model. This represents a shift from various model devel-
opment methods in which multiple regression equations 
corresponding to each analyte under study are created 
to describe retention behaviour (McEachran et al. 2018). 
A multiple linear regression model was also performed, 
including additional independent variables such as col-
umn temperature and total adsorption of ACN to the SP, 
to investigate the origin of the nonlinear behaviour devi-
ating from the theory. The nonlinearity was still observed. 
To verify that the observed anomaly is not an artefact of 
the model, the numerical differences in the experimental 
retention data were calculated. A correlation was found 
between change in MP composition and temperature on 
retention. The anomaly at the MP composition of 60 vol. 
% ACN is again observed, raising an open research ques-
tion about the origin of the surveyed nonlinear anomaly.

Materials and methods
Chemicals
Diethyl phthalate (DEP) (99.5%), dimethyl phthalate 
(DMP) (≥ 99%), dibutyl phthalate (DBP) (99%), 3-meth-
ylbenzoic acid (99%), 2,4,6-triiodophenol (97%), uracil 
(99%) and benzaldehyde (≥ 99%) were purchased from 
Sigma-Aldrich (Germany) and vanillin (99%) from Merck 
(Germany). Acetonitrile (ACN) (Fischer Scientific, 

UK, ≥ 99.9%) and deionised water, purified with the Mill-
Q® system, were used as chromatographic solvents.

1 mg  mL−1 stock solutions of DMP, DEP, DBP, benza-
ldehyde, 2,4,6-triiodophenol, 3-methylbenzoic acid and 
vanillin were prepared in ACN. A 1 mg mL−1 stock solu-
tion of uracil was prepared in deionised water. 10 mg L−1 
solutions of investigated analytes were prepared by dilu-
tion with ACN. To each solution, uracil was added at a 
concentration of 10 mg L−1, which was used as a marker 
for the void time. Its determination using uracil was pre-
viously described as an acceptable estimation technique 
(Bidlingmeyer et al. 1991; Rimmer et al. 2002).

Instrumental conditions
The HPLC experiments were carried out on an Agilent 
Technologies system 1100 with degasser, quaternary 
pump, auto-sampler, column thermostat and a diode 
array detector. Two RP columns were used; YMC Triart 
C18 (150 × 4.6 mm, 5 μm, pore size of 12 nm) and YMC 
Triart C8 (150 × 4.6 mm, 5 μm, pore size of 12 nm). All 
chromatographic separations were isocratic, with a 
constant flow of 1  mL  min−1. Absorption spectra were 
recorded with a diode array detector in the spectral range 
from 210 to 400 nm at a collection frequency of 5 Hz.

Experimental design for data acquisition
Retention data for uracil, DMP, DEP and DBP using the 
solution in ACN were collected using a full factorial 
experimental design by varying the column temperature 
(25, 35 and 45  °C), MP composition (40, 50, 60, 70, 80 
vol. % ACN) and the SP (C8 and C18). Each data point 
was collected three times, by repeating the full factorial 
experimental sequence.

The solutions of analytes in the training and test sets 
were used in HPLC experiments at 25 °C on the C8 SP at 
65, 75 and 85 vol. % of ACN in the MP for the collection 
of data, used in the investigation of the training error and 
the generalization error of the model. All retention data 
are presented in the Additional file 1: Tables S6–S12.

Ab initio density functional theory calculations
Density functional theory (DFT) calculations were 
implemented using GAMESS (version R2 September 30, 
2020 for Microsoft Windows) (Barca et al. 2020) and the 
graphical interface software Winmostar (Winmostar—
Student V10.1.3 for 64bit Windows). The B3LYP hybrid 
functional was used. The geometry was preliminar-
ily optimized using a smaller 3-21G* basis set, followed 
by an aug-cc-pVTZ basis set for the final optimization. 
Water was simulated using the polarizable continuum 
model (Mennucci 2012) for the determination of solute 
cavitation volumes. The calculated analyte cavitation vol-
umes are listed in the Additional file 1: Table S13.
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HSP calculation
Analyte HSP were calculated according to the group con-
tribution method described by Stefanis and Panayiotou 
(2012, 2008). Utilizing this technique, each analyte mol-
ecule is broken down into discrete first-order molecular 
fragments i.e. aromatic ArC-H, methyl -CH3 and ester 
COO fragments. After identifying all first-order molecular 
fragments, second-order fragments can be identified. These 
include resonance stabilized functional groups i.e. aromatic 
ester ArCCOO fragments. Once a molecule is described 
by first- and second-order fragments, the dispersion, polar 
and hydrogen bond contributions for each fragment are 
summed. These sums are consecutively modified by adding 
terms, derived by regression of a large set of experimentally 
determined HSP parameters. n-octane and n-octadecane 
were used as SP approximations and their HSP were calcu-
lated using the same method. The calculated HSP are pre-
sented in the Additional file 1: Table S14. HSP for deionised 
water and ACN, Additional file 1: Table S15, were collected 
from tabulated experimental data, provided by Hansen 
(2007).

Statistical analysis and model construction
All statistical analyses were implemented using R (ver. 
4.0.2) within Rstudio (ver. 1.3.1056). R was also used in the 
production of the figures. The retention prediction model 
was implemented using Python (ver. 3.6.1) within PyCharm 
(2019.3.5 Professional Edition).

Abbreviations
RP: Reversed-phase; SP: Stationary phase; MP: Mobile phase; LFER: Linear free-
energy relationship; HSP: Hansen solubility parameters; DEP: Diethyl phthalate; 
DMP: Dimethyl phthalate; DBP: Dibutyl phthalate; ACN: Acetonitrile; DFT: 
Density functional theory; RMSEP: Root mean square error of prediction; RSE: 
Residual standard error; S: Index representing the SP; M: Index representing 
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