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Abstract

A simple and cost-effective electrochemical synthesis of carbon-based nanomaterials for electrochemical biosensor
is of great challenge these days. Our study describes a single-step electrochemical deposition strategy to prepare a
nanocomposite of electrochemically reduced graphene oxide (ErGO), multi-walled carbon nanotubes (MWCNTs),
and polypyrrole (PPy) in an aqueous solution of pH 7.0 for dopamine (DA) detection. The ErGO/MWCNTs/PPy
nanocomposites show enhanced electrochemical performance due to the strong π–π* stacking interactions among
ErGO, MWCNTs, and PPy. The efficient interaction of the nanocomposites is confirmed by evaluating its physical
and electrochemical characteristics using field-emission scanning electron microscopy, Raman spectroscopy,
electrochemical impedance spectroscopy, cyclic voltammetry, and amperometry. The deposited nanocomposites
are highly stable on the substrates and possess high surface areas, which is vital to improve the sensitivity and
selectivity for DA detection. The controlled deposition of the ErGO/MWCNTs/PPy nanocomposites can provide
enhanced electrochemical detection of DA. The sensor demonstrates a short time response within 2 s and is a
highly sensitive approach for DA detection with a dynamic linear range of 25–1000 nM (R2 = 0.999). The detection
limit is estimated to be 2.3 nM, and the sensor sensitivity is calculated to be 8.96 μA μM−1 cm−2, with no distinct
responses observed for other biological molecules.
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Introduction
The production of electrochemically fabricated integrated
nanocomposites (containing carbon-based nanomaterials,
metal nanoparticles, and conducting polymers) on the sur-
face of a transducer using a binder-free process increases the
transducer’s electrochemical stability and film-forming ability

(Tang et al. 2015; Feng et al. 2011; Huang et al. 2014). A var-
iety of conductive nanomaterials, in particular graphene, a
two-dimensional nanostructured material, have attracted
considerable attention because of their fascinating properties,
such as large specific area, electrical conductivity, mechanical
stiffness, and biocompatibility, making them potential candi-
dates for biosensing devices (Geim and Novoselov 2007;
Rabti et al. 2016; Sun et al. 2015). Nowadays, researchers
focus on several procedures and approaches to produce gra-
phene; in particular, electrochemical deposition has emerged
as one of the most significant methods to fabricate graphene
because it saves labor; is convenient, inexpensive, non-toxic,
rapid, environmentally friendly, and safe; and does not
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require binders (Gao et al. 2010; Wei et al. 2015; Guo et al.
2009).
However, fabricating graphene-based nanocomposites

as biosensing platforms through a simple and convenient
“single-step” electrochemical approach without using
binders or any additional treatments and sophisticated
procedures is still a challenge. This approach incorpo-
rates graphene oxide (GO), polypyrrole (PPy) and multi-
walled carbon nanotubes (MWCNTs) as the starting
materials to electrochemically prepare nanocomposites
on a transducer surface. Most previous studies on this
the preparation of graphene-based nanocomposite use a
“multi-step” electrochemical deposition strategy. For in-
stance, acupuncture needle surface electrodeposited
graphene-gold nanoparticles (AuNPs) for dopamine
(DA) detection (Tang et al. 2015). These processes of
decoration and conjugation involve complicated modifi-
cation steps and harsh preparation conditions. There-
fore, there is a demand for a “single-step”
electrochemical deposition process that is simple and
cost-effective. Modifying an electrode using graphene,
MWCNTs, and PPy to produce electrochemically inte-
grated components can enhance its electrochemical
properties (Li et al. 2014; Seenivasan et al. 2015; Yang
et al. 2016). A previous report has demonstrated a
multi-step procedure for electrochemically depositing a
MWCNT/PPy composite onto a gold surface for DNA
detection (Miodek et al. 2015). Si et al. developed a two-
step electrochemical approach to fabricate DA biosensor
based on an ErGO/PPy composite prepared in lithium
perchlorate (LiClO4) medium. This strategy revealed that
the π–π* interaction between the ErGO/PPy composite
and the DA molecules remarkably increases the elec-
trode sensitivity (Si et al. 2011). To the best of our
knowledge, a single-step electrochemical strategy to pre-
pare the ErGO/MWCNTs/PPy nanocomposite in a neu-
tral solution for application in a DA biosensor has not
been reported yet.
DA is a catecholamine neurotransmitter that plays an

important role in the human central nervous system.
Abnormal levels of DA are connected to several neuro-
logical disorders, e.g., schizophrenia, Parkinson’s disease,
and Huntington’s disease (Schultz 1997; Ali et al. 2007).
Until now, various analysis techniques have been estab-
lished for DA sensing; in particular, electrochemical
methods have attracted considerable attention owing to
their simple operation, rapid response, low instrumental
expense, and high sensitivity and selectivity (Keerthi
et al. 2019) (Mercante et al. 2015). However, the selectiv-
ity of conventional electrodes for DA is not satisfactory
because of the overlapping in the electrochemical poten-
tial window of DA with those of many other substances
in the urine, blood, and the central nervous system (e.g.,
ascorbic acid (AA)). Enzymatic-based methods have

attracted considerable attention due to their high sensi-
tivity and comparative low cost. Despite these benefits,
these methods are not widely used due to their low sta-
bility and complicated process of binding the enzyme to
the electrode surface (Njagi et al. 2010). In order to
avoid these complications, non-enzymatic electrode
modification methods using carbon, metal, and polymer-
based nanomaterials have received considerable atten-
tion due to the more robust and larger surface area to
enhance selectivity, sensitivity, and stability of DA detec-
tion (Tan et al. 2015; Ma et al. 2020).
In this study, a new strategy for the fabrication of the

nanocomposite-based biosensor for DA detection using
a “single-step” electrochemical approach in an aqueous
solution of pH 7.0 without any additional treatment has
been proposed. This process is schematically presented
in Scheme 1. We prepared the nanocomposite by drop-
casting a homogeneous mixture of GO, MWCNTs, and
PPy on a transducer surface, producing an ErGO/
MWCNT/PPy nanocomposite. The ErGO/MWCNTs/
PPy nanocomposite was realized by the strong electro-
static force between the amino group of Py and the car-
boxylic group of GO and MWCNTs. Preparation of the
nanocomposite in a neutral solution enabled cost-
effective synthesis and high electrocatalytic activity.

Experimental
Reagents and instruments
Graphite, MWCNTs (outer diameter: 6–9 nm; diameter:
5.5 nm; length: 5 μm and > 95% purity), pyrrole mono-
mer, dopamine hydrochloride, epinephrine (EP), nor-
epinephrine (NEP), ascorbic acid (AA), uric acid (UA),
Na2HPO4, NaH2PO4, K3[Fe(CN)6], and H2SO4 were pur-
chased from Sigma Aldrich, USA. All chemicals were of
analytical grade and used as received. All aqueous solu-
tions were prepared using deionized water (Milli-Q
water purifying system, 18 MΩ·cm).
Cyclic voltammetry (CV) and chronoamperometry

(CA) were performed using a potentiostat (CompactStat
Ivium Technology, the Netherlands). Electrochemical
impedance spectroscopy (EIS) was recorded using an
electrochemical analyzer (VersaSTAT, Princeton Ap-
plied Research, USA) in the frequency range of 100 to
0.1 Hz at a DC potential of 250 mV and AC potential of
± 5 mV. A three-electrode system was used with a bare
glassy carbon electrode (GCE, 3 mm in diameter) as the
working electrode, Ag/AgCl as the reference electrode,
and a platinum wire as the auxiliary electrode. The
nanocomposites were deposited on iridium tin oxide
(ITO) substrates to study their surface characteristics by
field-emission scanning electron microscopy (FE-SEM)
and Raman spectroscopy. SEM characterization was per-
formed on a field-emission scanning electron micro-
scope (Hitachi S-4200, Japan) operated at 15 kV and
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150W. Raman spectra were observed on a LabRAM HR
Raman spectrometer (HORIBA Scientific, France).

Electrochemical synthesis of the ErGO/MWCNTs/PPy
nanocomposite
Graphene oxide was synthesized from graphite by modi-
fied Hummer’s method (Hummers and Offeman 1958).
The pristine MWCNTs were treated by mixing in a solu-
tion containing HNO3/H2SO4 (1:1, v/v) according to a
procedure described previously (Woo et al. 2012). GO/
MWCNTs/Py dispersion was prepared by mixing 10mg
of GO with 5mg of MWCNTs dispersed in 14.85mL of 1
M H2SO4, and then 0.15mL of 0.15M Py monomer was
added to form a homogeneous brown dispersion. This dis-
persion was magnetically stirred for 30min and then soni-
cated for 20min under ambient conditions. After the
dispersion was centrifuged for 10min at 10000 rpm, the
residue was washed with water three times to remove any
loosely adsorbed carbon-containing impurities and Py
monomer. The obtained solid was dispersed again into 15
mL distilled water to form a 1mgmL− 1 suspension. The
products of the GO/MWCNTs/Py dispersion were col-
lected and stored at 4 °C until further use. A bare GCE
was rinsed with water and polished using 0.3 μm alumina
slurries. The polished GCE was sonicated in ethanol and
water for 10min each. Then, the sonicated GCE was
rinsed with water and dried under ambient conditions.
The GO/MWCNTs/Py dispersion (8 μL)-modified GCE
was prepared and used for electrochemical deposition.
The CV of the GCE/GO/MWCNTs/Py composite was
performed by cycling between − 1.4 V and + 0.8 V at a po-
tential scan rate of 50mV s− 1 in phosphate-buffered saline
(PBS, pH 7.0); 15 cycles were performed. Subsequently,
the obtained GCE/ErGO/MWCNT/PPy nanocomposite
biosensor was rinsed with water and dried in air.

Results and discussion
Physicochemical characterization of transducer surface
FE-SEM images of PPy (A), GO (B), ErGO (C), ErGO/PPy
(D), ErGO/MWCNTs/PPy (E), and MWCNTs (F) are shown
in Fig. 1. The pure PPy had a nanosphere-like structure with
a diameter of around 200 nm (Jung et al. 2009). GO pos-
sessed a well aggregated, crumbled, and thick-layered struc-
ture. After electrochemical deposition of GO, it could be
seen that the ErGO film was covered with single or ultrathin
layers and showed a wrinkled sheet-like structure (Du et al.
2011). This structure could effectively improve the electrical
conductivity and significantly increase the specific surface
area, producing a good interface for the following modifica-
tions. The electrochemically deposited ErGO/PPy surface
had a nanosphere-like morphology with several fine folds
and ripple-like wrinkles (Bose et al. 2010) due to the electro-
static interaction between ErGO and PPy. The FE-SEM
image of the electrochemically deposited ErGO/MWCNTs/
PPy nanocomposite showed a well-established intercon-
nected structure of nanospheres, ultrathin layers, and nano-
wires. The integrated nanocomposite was effectively
deposited on the substrate and grew more uniformly than
PPy, GO, ErGO, ErGO/PPy, and MWCNTs. The resulting
ErGO/MWCNTs/PPy nanocomposite showed significant
advantages for DA biosensing applications.
Raman spectroscopy was used to characterize the

chemical and structural changes of (a) PPy, (b) GO, (c)
ErGO, (d) ErGO/PPy, (e) ErGO/MWCNTs/PPy, and (f)
MWCNTs (Fig. 2A). For PPy, the characteristic bands
appeared at 1338 cm− 1 and 1574 cm− 1, corresponding to
the pyrrole-ring stretching and C=C bond stretching, re-
spectively (Liu 2004). GO showed D and G bands at
1350 cm− 1 and 1585 cm− 1, respectively, corresponding
to the characteristic bands observed previously (Gao
et al. 2011). After the deposition of GO by potential

Scheme 1 Schematic representation of single-step electrochemical strategy for fabrication of integrated ErGO/MWCNTs/PPy nanocomposite
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cycling, the formation of ErGO led to a significant in-
crease in the intensity of the D and G bands. The char-
acteristic D band was found at 1350 cm− 1 in both ErGO
and ErGO/PPy, while the characteristic G band was lo-
cated at 1585 cm− 1 in ErGO and shifted to 1590 cm− 1 in
ErGO/PPy with the decrease in the intensity, which was
attributed to the repaired defects in ErGO due to the
elimination of oxygen-containing functional groups from
GO (Bose et al. 2010). The Raman spectrum of the
ErGO/MWCNTs/PPy nanocomposite showed two

characteristic bands at 1350 cm− 1 and 1585 cm− 1 with a
significant increase in the intensity after it was incorpo-
rated in the MWCNT with the EGO/PPy matrix, indi-
cating a strong interaction between graphitic allotropes
and PPy due to π–π* electron interaction between ErGO
or MWCNTs and PPy (Elnaggar et al. 2017). The in-
crease in the intensity of D and G bands of the MWCN
Ts after acid treatment when compared to those of the
ErGO/MWCNTs/PPy nanocomposite indicated the in-
creased defect concentration of the MWCNTs (Vinayan

Fig. 1 FE-SEM images of PPy (a), GO (b), ErGO (c), ErGO/PPy (d), ErGO/MWCNTs/PPy (e), and MWCNTs (f)

Fig. 2 A Raman spectra of (a) PPy, (b) GO, (c) ErGO, (d) ErGO/PPy, (e) ErGO/MWCNT/PPy, and (f) MWCNTs. b CV curves of the electrochemical
deposition of GCE-GO/MWCNT/Py in N2 saturated 0.1 M PBS (pH 7.0) at a scan rate 50 mVs− 1. Inset: CV curve of the electrochemical deposition
of GCE-GO/Py
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et al. 2012). The Raman spectra revealed that the inten-
sity ratios (ID/IG) of GO, ErGO, ErGO/PPy, ErGO/
MWCNTs/PPy, and MWCNTs were 0.81, 0.88, 0.58,
1.16, and 0.97, respectively. This result confirms the suc-
cessful deposition of the ErGO/MWCNTs/PPy nano-
composite on the GCE surface could serve as a favorable
platform for electrochemical studies.
The ErGO/MWCNTs/PPy nanocomposite was pre-

pared from a homogeneous dispersion of GO, MWCN
Ts, and Py in an aqueous solution of pH 7.0 by a single-
step electrodeposition approach. Figure 2b shows the
CV curves of the GO/MWCNT/Py dispersion in the po-
tential window of − 1.4 V to + 0.8 V vs. Ag/AgCl for 15
cycles at a scan rate of 50 mVs− 1. The positively charged
Py monomer was homogeneously adsorbed over the
negatively charged GO interconnected with MWCNTs
via electrostatic interactions between the amino group of
Py and the oxygen functionalities on the GO surface (Si
et al. 2011). The slight decrease in the characteristic
peaks indicates the successful formation of nanocompos-
ites over the GCE, with increasing the number of poten-
tial scanning cycles. The cathodic peak at − 1.02 V was
attributed to the irreversible electrochemical reduction
of GO and the redox peaks at 0.04 V and − 0.12 V were
ascribed to the growth of PPy on the GCE. As a system,
the electrochemically deposited ErGO/MWCNTs/PPy
nanocomposite exhibited better cycling performance
(2.3-fold) than ErGO/PPy (inset, Fig. 2B). This result
showed that the integrated nanocomposite was highly
stable on the electrode surface and the more active sites
in MWCNTs were very helpful for the reduction of GO
(Huang et al. 2014). The electrochemically deposited
nanocomposite was successfully formed using a conveni-
ent and environment friendly process, and this nano-
composite has a great potential for use in
electrochemical biosensor applications.
The electrochemical characteristics of the nanocom-

posite on the GCE were studied in a 5 mM K3Fe(CN)6
solution containing 0.1M KCl by the CV experiments.

As shown in Fig. 3A, PPy (curve a) showed no redox
peak currents and peak potential shifts; this is due the
weak electrical conductivity caused by the insufficient
polymerization of PPy in the aqueous solution (pH 7.0).
Compared to PPy, the redox peak current of ErGO/PPy
(curve b) increased significantly. After incorporating the
MWCNTs with the GO and Py dispersion, the obtained
mixture was deposited on the GCE to get GCE/ErGO/
MWCNTs/PPy (curve c) and the redox peak current in-
creased remarkably because of the high conductivity and
large surface area of MWCNTs, which greatly promoted
electron transfer. Thus, the redox peak current of
ErGO/MWCNTs/PPy (60.69 μA) was 1.2 and 2.0 times
greater than that of ErGO/PPy (49.71 μA) and PPy
(31.01 μA), respectively, due to the high electron transfer
efficiency as well as large effective surface area and en-
hanced electrical properties.
The EIS spectra were obtained to test the interface

properties and confirm the stepwise changes on the
GCE surface. Figure 3B shows the EIS spectra of pure
PPy (curve a), ErGO/PPy (curve b), and ErGO/
MWCNT/PPy (curve c) in the frequency range from 100
KHz to 0.1 Hz in a 5 mM K3Fe(CN)6 solution containing
0.1M KCl. The semicircle diameter of the Nyquist plots
represents the charge-transfer resistance (Rct) of the
redox probe at the electrode/electrolyte interface (Wang
et al. 2014). When PPy was electrodeposited on the
GCE, the semicircle diameter sharply increased because
the low electrical conductivity of PPy in the aqueous so-
lution led to insufficient polymerization of PPy. Com-
pared with that of PPy, the electrochemical deposition of
ErGO/PPy showed a decreased Rct value, showing im-
proved electrical conductivity. Electrochemical depos-
ition of ErGO/MWCNT/PPy showed a straight line,
suggesting a decrease in the Rct value due to the more
efficient use of active sites of the MWCNTs. From the
Nyquist plots, the Rct of the ErGO/MWCNT/PPy-modi-
fied electrode (31Ω) was found to be smaller than those
of ErGO/PPy (168Ω) and PPy (443Ω). These data

Fig. 3 a CV and b EIS of a GCE-PPy, b GCE-ErGO/PPy, and c GCE-ErGO/MWCNT/PPy in 5 mM K3Fe(CN)6 containing 0.1 M KCl. CV scan rate: 50
mVs− 1; impedance frequency range: 100 KHz to 0.1 Hz
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clearly indicated that the ErGO/MWCNT/PPy nano-
composite exhibited 5.5 and 14.3 times decreased Rct

values than ErGO/PPy and PPy, respectively, which indi-
cated the former’s enhanced electrical conductivity and
potential for application as an ideal platform. This result
was also related to the CV results.
The electrochemical properties of the ErGO/MWCNTs/

PPy-modified electrode for DA current response were in-
vestigated in terms of applied potential, pH, and optimal
temperatures. To study the dependence of DA detection
on applied potential, CA measurements were performed
to observe the current response at different potentials in
the presence of 250 nM DA in the potential range 0.1–
0.3V (Fig. 4a). The current response increased with in-
creasing potential and reached its maximum value at a
potential of 0.25V. On further increasing the potential to
0.3V, the current response of DA decreased slightly.
Therefore, 0.25V was selected to be the optimal potential
of the sensor.
The effect of pH on the electrochemical behavior of

DA in the ErGO/MWCNT/PPy-modified electrode was
also evaluated by CA analysis. As shown in Fig. 4b, the
current response increased gradually with the addition
of 250 nM DA for pH values of 5.0–9.0 and the highest
current response was achieved at a pH 7.0. On further
increasing the pH, the current response slightly de-
creased. Therefore, the pH value 7.0 was chosen as the

optimal condition and used in subsequent electrochem-
ical experiments.
The influence of temperature on the electrochemical

behavior of DA in the ErGO/MWCNTs/PPy-modified
electrode was investigated. As shown in Fig. 4c, the DA
current response increased remarkably over the temper-
atures range 25–45 °C. It could be seen that the ampero-
metric current response increased rapidly from 25 to
35 °C and then slightly decreased from 40 to 45 °C.
Therefore, the optimal temperature was determined to
be 35 °C and it was used for further electrochemical ex-
periments for DA detection.

Electrochemical evolution of nanocomposite for DA
detection
The electrocatalytic behavior of DA in different modified
electrodes was tested by CV and the results are shown
in Fig. 5A. It was observed that the current response of
DA was insignificant in GCE-PPy (curve a) owing to its
poor electrical conductivity. The current response of DA
in ErGO/PPy (curve b) was higher than that in PPy,
which suggested fast electron transfer to DA. Compared
to PPy (2.17 μA) and ErGO/PPy (9.11 μA), ErGO/
MWCNTs/PPy (66.36 μA) exhibited a significantly better
current response (curve c) due to its higher electrocata-
lytic efficiency as well as the synergistic effect of ErGO,
MWCNTs, and PPy (Ling et al. 2013). Using Randles-

Fig. 4 a Amperometric current response of GCE/ErGO/MWCNTs/PPy for DA at different potentials, b at different pH values, and c at different
temperatures in 0.1 M PBS (pH 7.0) containing 250 nM–1000 nM DA
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Sevcik equation, the electrochemically active surface
areas were also estimated (Eq. (1)).

ipa ¼ 2:69� 105n3=2ACD1=2ν1=2 ð1Þ

where ipa is the anodic peak current (A), n is the number
of electrons (n = 2), A is the electrochemically active
surface area (cm2), D is the diffusion coefficient (3.29 ×
10− 6 cm2 s− 1) and C is the concentration of DA (50 ×
10− 6 M), and ν is the scan rate (Vs− 1). According to the
equation, the electrochemically active surface area of the
GCE-PPy, GCE-ErGO/PPy, and GCE-ErGO/MWCNTs/
PPy was estimated to be 0.142 cm2, 0.586 cm2, and 4.34
cm2, respectively. The GCE-ErGO/MWCNTs/PPy elec-
trode possesses higher electroactive surface area which
enhances the oxidation of DA. Further, the ErGO/
MWCNTs/PPy-modified GCE showed (a) no distinct re-
sponse in the absence of DA and (b) a well-defined re-
sponse in the presence of DA (inset, Fig. 5A). It was
clear that the electrochemical production of the ErGO/
MWCNTs/PPy nanocomposite surface was 7.3 and 30.6
times higher than that of the ErGO/PPy and PPy sur-
faces, respectively. Therefore, controlling the specific
surface area and improving the electrical conductivity

were effective ways to develop a platform for highly sen-
sitive DA detection.

Sensor performance and calibration for DA
Electrochemical sensing of the PPy (a), ErGO/PPy (b),
and ErGO/MWCNTs/PPy (c) was tested using ampero-
metric measurements to investigate their DA detection
ability. The sensing was performed by adding 250 nM
DA in 0.1M PBS (pH 7.0) at an applied potential of 0.25
V. As shown in Fig. 5B, the highest sensing response
was observed for the ErGO/MWCNTs/PPy electrode,
indicating that it had a stronger electrocatalytic effect to-
ward DA than ErGO/PPy and PPy. According to the am-
perometric response, the sensitivity of PPy, ErGO/PPy,
and ErGO/MWCNTs/PPy was calculated to be 7.56,
7.73, and 8.96 μA μM−1 cm−2, respectively. These values
indicated that the single-step electrochemically depos-
ited ErGO/MWCNTs/PPy nanocomposites showed im-
proved synergistic properties, which could enhance the
electrocatalytic effect and provide a larger electroactive
surface area to enhance the sensitivity for DA detection.
The calibration curves of the ErGO/MWCNTs/PPy

nanocomposite sensor for DA detection were plotted.
The Fig. 5C displays the amperometric response of the
ErGO/MWCNT/PPy electrode in 0.1M PBS (pH 7.0)

Fig. 5 A CVs of a GCE/PPy, b GCE/ErGO/PPy, and c GCE/ErGO/MWCNTs/PPy in 0.1 M PBS (pH 7.0) containing 50 μM DA at a scan rate of 50
mVs− 1. Inset: CV curves of GCE/ErGO/MWCNTs/PPy in the absence (a) and presence (b) of 50 μM DA. B Amperometric response of a GCE/PPy, b
GCE/ErGO/PPy, and c GCE/ErGO/MWCNTs/PPy in 0.1 M PBS pH (7.0) containing 250 nM DA. C Amperometric response of GCE/ErGO/MWCNTs/PPy
at 0.25 V in 0.1 M PBS pH (7.0) with successive addition of DA. Inset: Calibration curve for the DA sensor. D Amperometric response of GCE/ErGO/
MWCNTs/PPy for the addition of DA, AA, UA, NEP, and EP in 0.1 M PBS pH (7.0)
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containing DA at an applied potential of 0.25 V. The
amperometric signal rapidly changed due to changes in
the DA concentration, and the steady state current was
achieved within 2 s after the addition of DA. The nano-
composite sensor exhibited a short time response of 2 s
and a highly sensitive detection of DA with a dynamic
linear range of 25–1000 nM and a linear regression
equation of i (μA) = 194.56 CDA (nM) + 62.73 (R2 =
0.999). The detection limit was estimated to be 2.3 nM,
and the sensor sensitivity was calculated to be
8.96 μA μM− 1 cm− 2. The inset figure shows the calibra-
tion curves for DA detection. These results indicated
that the synergistic properties of the integrated nano-
composite could improve the electrochemical sensing
performance by achieving the best linearity in a dynamic
range of DA concentrations, high sensitivity, short re-
sponse time, and the lowest limit of detection. Compari-
son with of the sensing performance of different
electrode materials and analytical key parameters of
some recently reported DA sensors are listed in Table 1.
Therefore, the single-step synthesis of the integrated
ErGO/MWCNT/PPy nanocomposite could provide a
promising electrode material for the amperometric de-
tection of DA.
Selectivity is one of the most important analytical fac-

tors of sensor performance for practical applications.
Figure 5D presents the amperometric current response
of the ErGO/MWCNT/PPy-modified electrode to the
addition of 0.5 μM DA, 1 μM AA, 1 μM UA, 1 μM NEP,
1 μM EP, and a second addition of 0.5 μM DA. No dis-
tinct changes were observed in the amperometric re-
sponses of the other biological molecules (apart from
DA) at the operating potential of 0.25 V. These results
indicated that the ErGO/MWCNT/PPy nanocomposite
contains positively charged PPy, which could provide se-
lective DA detection (Si et al. 2011).

The storage stability and reproducibility are other es-
sential parameters for DA detection, and they were also
evaluated by amperometric analysis. To investigate the
reproducibility of the ErGO/MWCNT/PPy electrode,
0.5 μM DA was added six times, and a relative standard
deviation (RSD) of 5.43% was obtained. In addition, the
storage stability of the sensor was studied by ampero-
metric measurements. The current response of the sen-
sor retained over 94% of its initial value for 0.5 μM DA
after 3 weeks, indicating the good stability of the sensors.
Thus, the ErGO/MWCNT/PPy-modified electrode
showed favorable reproducibility and acceptable stability
for DA detection.

Conclusions
This study presents a single-step and controllable ap-
proach to prepare ErGO/MWCNT/PPy nanocomposite
from a homogeneous mixed solution using electrochem-
ical deposition in an aqueous solution of pH 7.0, without
harsh conditions; this nanocomposite can used as a bio-
sensor for DA detection. Our strategy is innovative in
that it uses an aqueous solution (pH 7.0), and it shows
better electrochemical sensor applications that acidic
solution-based methods. The electrochemically depos-
ited nanocomposite shows significantly improved elec-
trochemical performance by controlling its electroactive
surface area, thus increasing the electron transfer rate
and enhancing the electrode conductivity and sensor
sensitivity. Further research could be required on the de-
velopment of a biosensor for in vivo detection of DA in
real samples.

Abbreviations
ErGO: Electrochemically reduced graphene oxide; MWCNTs: Multi-walled
carbon nanotubes; PPy: Polypyrrole; DA: Dopamine; CV: Cyclic voltammetry;
CA: Chronoamperometry; EIS: Electrochemical impedance spectroscopy;
GCE: Glassy carbon electrode

Table 1 Comparison of the electrochemical performance of different electrode materials for DA detection

Electrode
materials

Analytical
technique

Linear range
(μM)

Detection limit
(μM)

Sensitivity
(μA μM− 1 cm− 2)

Interferences References

GA-RGO/AuNPs DPV 0.01-100.3 2.6 3.58 UA, AA (Thirumalraj et al. 2017)

ErGO/PEDOT Amperometry 0.1-175 39 - AA, UA (Wang et al. 2014)

CB SWV 0.1-20 60 1.81 AA, UA (Jiang et al. 2016)

ErGO/PPy DPV 0.1-150 23 - AA, UA (Si et al. 2011)

GO/C60 DPV 0.02-73.5 8.0 4.23 - (Thirumalraj et al. 2016)

S-Fe2O3 Amperometry 0.2-107 31.25 0.67 UA, AA (Chen et al. 2016)

PPy/Ag/PVP Amperometry 0.01-0.090 126 7.25 AA, UA, FA (Vellaichamy et al.
2017)

Fe3O4/GNs/NF DPV 0.020-130 7.0 - GLU, UA, AA (Zhang et al. 2015)

ErGO/MWCNTs/PPy Amperometry 0.025-1.0 2.3 8.96 AA, UA, NEP,
EP

This work

GA gallic acid, RGO reduced graphene oxide, AuNPs gold nanoparticles, ErGO electrochemically reduced graphene oxide, PEDOT poly(3,4-ethylenedioxythiophene),
PPy polypyrrole, CB carbon block, S-Fe2O3 shuttle-like iron(III) oxide, PVP polyvinylpyrrolidone, Fe3O4 iron (II, III) oxide, GNs graphene nanospheres, NF nafion, GO
graphene oxide, C60 fullerene
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