Skip to main content

Table 2 Equations and variables of kinetics and isotherms models

From: Insights into brewed tea waste as a green and low-priced adsorbent for solid-phase extraction of Cd(II) ions: isotherm, kinetic, and artificial neural network approach

Model

Equations

Variables

Graph

Slope

Intercept

Kinetic models

PFO

\(\ln (q_{{\text{e}}} - q_{{\text{t}}} ) = \ln q_{{\text{e}}} - k_{1} t\)

qe (mg g−1); Cd(II) ions adsorption at equilibrium, qt (mg g−1); Cd(II) retention at any time t, k1(min−1); rate constant

ln (qe–qt) versus t

k1

qe

PSO

\(\frac{t}{{q_{{\text{t}}} }} = \frac{1}{{k_{2} q_{{\text{e}}}^{2} }} + \frac{t}{{q_{{\text{e}}} }}\)

k2 (g mg−1 min−1); rate constant

t/qt versus t

qe

k2

Intraparticle diffusion model

\(q_{{\text{t}}} = k_{{{\text{id}}}} t^{1/2} + c\)

kid (mg g−1 min−1/2); rate constant C; thickness of the boundary layer

qt versus t1/2

kid

C

Isotherm models

Langmuir isotherm model

\(\frac{{C_{{\text{e}}} }}{{q_{{\text{e}}} }} = \frac{{C_{{\text{e}}} }}{{q_{\max } }} + \frac{1}{{bq_{\max } }}\)

Ce (mg L−1); Cd(II) amount in solution at equilibrium, qe (mg g−1); amount of Cd(II) uptake by BTW, b (L mg−1); Langmuir constant, qmax (mg g−1); maximum adsorption capacity

Ce/qe versus Ce

qmax

b

Freundlich isotherm model

\(\ln q_{{\text{e}}} = \ln K_{{\text{f}}} + \frac{1}{n}\ln C_{{\text{e}}}\)

Kf (mg g−1) and n; Freundlich isotherm model constants

ln qe versus ln Ce

n

Kf

D–R isotherm model

In qe = In qm-βε2

qm (mg g−1); monolayer adsorption capacity, β (kJ2 mol−2); activity coefficient, ε; Polanyi potential

ln qe versus ε2

β

qm