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Abstract 

Background Laser ablation inductively coupled plasma mass spectrometry (LA‑ICPMS) emerged in the mid‑1980s 
and rapidly became a crucial dating tool. The advent of femtosecond LA systems has substantially reduced volatility‑
dependent mass fractionation. This study showcases U‑Th and U‑Th‑Pb dating results of Quaternary zircons collected 
from Jeju Island, Korea, utilizing an advanced femtosecond laser‑connected multi‑collector (MC)‑ICPMS.

Findings Zircon grains from trachyte samples near the Baeknokdam lake (JJ616‑1), Yeongsil (JJ08‑1), Chunwangsa 
(JJ09‑1), and Oraidong (JJ09‑3) provided weighted mean 238U‑230Th ages of 28.7 ± 1.6 ka (n = 56/64, MSWD = 3.8), 
81.8 ± 10.9 ka (n = 11/12, MSWD = 1.6), 92.6 ± 4.6 ka (n = 49/51, MSWD = 2.2), and 117.6 ± 8.2 ka (n = 48/50, MSWD = 3.2), 
respectively. The age determination for JJ08‑1 zircon aligned well with the recommended value (82 ± 6 ka). Zircons 
from Sanbangsan (JJ615‑1) and Wonmansa (JJ08‑2) trachytes yielded common Pb and radioactive disequilibrium‑cor‑
rected weighted mean 238U‑206Pb ages of 785 ± 5 ka (n = 27/28, MSWD = 0.90) and 743 ± 8 ka (n = 28/30, MSWD = 0.79), 
respectively. The weighted mean 238U‑206Pb ages of Penglai and 61.308 reference zircons were determined to be 
4226 ± 21 ka (n = 22/25, MSWD = 3.8) and 2488 ± 20 ka (n = 19/20, MSWD = 1.8), respectively. These ages are concord‑
ant with the recommended values.

Conclusions Our data provides additional evidence of trachyte magmatism occurring in Jeju Island during the tran‑
sitional period between the Early and Middle Pleistocene and the Late Pleistocene. The zircon samples analyzed 
in this study could serve as reference age data for Quaternary geochronology research.
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Introduction
In the 1980s, the concept of coupling a laser ablation 
(LA) system with an inductively coupled plasma mass 
spectrometer (ICPMS) was introduced (Gray 1985). In 
LA-ICPMS analysis, a pulsed laser is used to ablate the 

surface of the sample within a gas-tight chamber, creat-
ing a stream of aerosol carried to an ICP source. Within 
the ICP source, the aerosol is vaporized and converted 
into ions. These ions are then separated according to 
their mass-to-charge ratios using a mass analyzer and 
quantified by a detector. Throughout these processes, 
elemental and isotopic fractionation is inevitable due to 
various factors, such as differences in elemental volatility 
and transportability, and time-dependent changes in par-
ticle size distribution (Hirata and Nesbitt 1995; Guillong 
and Günther 2002; Hirata 2003; Jackson and Günther 
2003; Jackson et al. 2004).

Over the past few decades, significant instrumental and 
strategic advancements have addressed these challenges 
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and enhanced the capabilities of LA-ICPMS (Sylvester 
and Jackson 2016). The use of helium has improved 
the transport of ablated aerosols to the ICP, leading to 
increased signal intensities. The introduction of a two-
volume sample chamber design has provided rapid signal 
response, effectively reducing positional bias and ena-
bling higher spatial resolution. Additionally, the reduc-
tion in laser wavelength has resulted in higher absorption 
and improved ablation of transparent materials, as well as 
more efficient ionization in the ICP. The initial generation 
of laser ablation system utilized long wavelength, visible 
laser beams (Gray 1985), but it was soon recognized that 
the shorter wavelength, particularly the 213 nm Nd:YAG 
and 193  nm ArF Excimer, offered more efficient and 
stable ablation of geologic materials. In the 2000s, the 
introduction of femtosecond lasers proved highly effec-
tive in reducing target heating and minimizing volatility-
dependent elemental and isotopic fractionation. This 
advancement resulted in several benefits, such as higher 
evaporation efficiency and a shift in the size distribution 
of sample particles toward smaller sizes, thus enhancing 
the precision and accuracy of data (Russo et al. 2002; Poi-
trasson et al. 2003; Diwakar et al. 2013). The application 
of femtosecond laser technology would be particularly 
beneficial for absolute element concentration determi-
nations and stable metal and metalloid isotope analyses 
(Poitrasson and d’Abzac 2017).

The pioneering work of Feng et  al. (1993) and Fryer 
et  al. (1993), based on 207Pb/206Pb determinations on 
Precambrian zircon, showcased the utility of LA-ICPMS 
as a dating tool. The versatility, ease-of-use, speed, and 
relatively moderate cost of LA-ICPMS addressed a sig-
nificant challenge in ion probe dating—the high expense 
of instrumentation and the limited availability of suit-
ably equipped laboratories. Since the mid-1990s, con-
tinuous advancements in the laser system and ICPMS 
instrumentation have facilitated the dating of zircon and 
other accessory minerals using the Pb/U decay scheme 
(Woodhead et  al. 2016). The challenges associated with 
LA-ICPMS U-Pb geochronology, particularly the frac-
tionation of Pb relative to U during ablation, transport, 
and ionization processes, as well as common Pb correc-
tion difficulties, have been extensively discussed (e.g., 
Jackson et  al. 2004). The present-day spatial resolution, 
and potentially precision, in 238U-206Pb age determina-
tion have become nearly comparable to that achieved 
by the ion probe technique, provided that well-charac-
terized matrix-matched reference materials are available 
(Woodhead et al. 2016).

The dating of Quaternary zircon through in  situ U-Th 
analysis began in the 1990s, employing the ion probe tech-
nique (e.g., Reid et  al. 1997). While the potential of LA-
ICPMS in U-Th analysis of zircon was recognized early on 

(Stirling et al. 2000), its widespread adoption came much 
later (Bernal et  al. 2014). In  situ U-Pb dating of Quater-
nary zircon commenced earnestly in the 2000s using the 
ion probe (Bacon et  al. 2000). Given the analytical chal-
lenges in U-Th and U-Pb dating for Quaternary zircon, 
stemming from extremely small amounts of radiogenic 
daughter nuclides in the decay chains, the instrumen-
tal bias should be corrected with a great care. The use of 
appropriate mineral standards is critical not only for cor-
recting mass bias and elemental fractionation, but also for 
ensuring the overall accuracy and reliability of LA-ICPMS 
age determinations. As part of our effort to develop refer-
ence materials, we present the results of U-Th and U-Th-
Pb dating for Pleistocene zircons collected from Jeju 
volcanic island, Korea, using an advanced femtosecond 
laser-connected multi-collector (MC)-ICPMS.

Principles of zircon U‑Th and U‑Th‑Pb dating
The principles of zircon U-Th and U-Th-Pb dating are 
well-explained in textbooks (e.g., Faure and Mensing 
2005), and only briefly reminded here.

The radioactivity of 230Th in zircon is attributed to 
two components. Firstly, there is the excess 230Th decay, 
expressed as (230Th)0excess  e−λt (λ is the decay con-
stant of 230Th = 9.1706 ×  10–6  y−1), with a half-life of 
75,584 ± 110  years (Cheng et  al. 2013). Secondly, there 
is the activity of supported 230Th, represented as (238U)
(1 −  e–λt), which increases with time. On the 230Th/232Th 
(activity ratio, y-axis) and 238U/232Th (activity ratio, 
x-axis) plot, zircon data conform to a linear relationship 
(isochron) with a slope of 1 −  e–λt and a y-intercept of 
(230Th/232Th)

0

excess  e
–λt provided that the analyzed parts 

of the zircon share the same age and initial 230Th/232Th 
ratio, and have remained closed to U and Th after crys-
tallization. After approximately 5 times the 230Th half-life 
(over 350,000 years), a state of secular equilibrium is re-
established, resulting in all data points aligning along the 
1:1 line (equiline) of the 230Th/232Th-238U/232Th diagram. 
Consequently, the information needed for zircon U-Th 
disequilibrium dating is the 230Th/232Th and 238U/232Th 
ratios.

In the case of old zircon that has attained secular 
equilibrium among radionuclides in the U-Th-Pb decay 
chains, the production rates of Pb isotopes at the end 
of the chains become equal to the decay rates of their 
respective grandparent nuclides. Consequently, the decay 
of U and Th isotopes can be treated as if they directly 
transform into Pb isotopes. However, for young (i.e., Plio-
cene or younger) zircon, one must consider isotope frac-
tionation effects involving intermediate daughters such 
as 230Th and 231Pa. Zircon has the tendency to exclude a 
significant proportion of 230Th in the magma. As a result, 
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after decay, there will be a deficiency in 206Pb, leading to 
the underestimation of the 238U-206Pb age. This effect was 
already recognized as early as the 1970s (Mattinson 1973; 
Ludwig 1977) and quantified by Schärer (1984) with 
Eq. (1).

where fTh/U = [Th/U]concentration, zircon/[Th/U]concentration, magma, 
λ238 = decay constants of 238U = 1.55125 ×10–10 y−1(Steiger 
and Jäger 1977), λ230 = decay constants of 230Th = 9.1706 × 
 10–6 y−1 (Cheng et al. 2013) and t = age.

More recently, Sakata (2018) proposed a practical 
approach for calculating the corrected U-Pb age of Qua-
ternary zircon. This scheme is a kind of 207Pb-correction 
method based on a modified Tera-Wasserburg con-
cordia. Since zircon typically crystallizes in intermedi-
ate to felsic magma, the influence of melt disequilibria 
can be reasonably neglected. In this case, the modified 
concordia is constructed using Eqs. (2) and (3) (Sakata 
et  al. 2017). A bisection method between the modified 
concordia and the common Pb line can be used to cal-
culate the 238U-206Pb age corrected for the contributions 
from both initial disequilibria and common Pb, and its 
uncertainty.

(1)

206
Pb =

238
U (e�238t − 1)+ (�238/�230)(fTh/U − 1)

where fPa/U = [Pa/U]zircon/[Pa/U]magma, λ235 = decay con-
stants of 235U = 9.8485×10–10 y−1 (Steiger and Jäger 1977), 
λ231 = decay constants of 231Pa = 2.13×10–5 y−1 (Lide and 
Frederikse 1995) and t = age.

For instance, consider a 1 Ma zircon without common 
Pb and featuring a Th/U ratio five times lower than that 
of the melt (fTh/U = 0.2). The difference between disequi-
librium-corrected and uncorrected 238U-206Pb ages for 
this zircon reaches approximately 9%, significantly sur-
passing the bounds of analytical uncertainty.

Geology of Jeju Island and sample collection
Jeju Island, the largest island in Korea, is situated on the 
continental shelf around 80  km off the south coast of 
the Korean Peninsula (Fig.  1). The volcanic activity on 
Jeju Island began during the Early Pleistocene, approxi-
mately 1.7 million years ago. The island has been shaped 

(2)

(

206
Pb/238U

)

= (e�238t − 1)+ (�238/�230)

(

fTh/U− 1
)

(1−e−�230t)e�238t

(3)

(

207
Pb/235U

)

= (e�235t − 1)+ (�235/�231)

(

fPa/U− 1
)

(1−e−�231t)e�235t

Fig. 1 Digital elevation model of Jeju Island based on ASTER satellite data acquired on 30 November, 2013, with sample locations
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by quasi-continuous small-volume volcanism and inter-
mittent large-volume lava effusion. This has resulted 
in the formation of an elongated symmetrical shield 
volcano with Mt. Halla at its summit, accompanied by 
over 300 monogenetic scoria cones, as well as minor 
tephra rings, maars, and lava domes. Geochronologi-
cal and geochemical analyses suggest that Jeju volcanic 
rocks can be divided into three geochemically distinct 
groups: the Early-Middle Pleistocene high-Al alkalic 
magma suite (Stage 1), the Middle Pleistocene transi-
tional alkalic magma suite (Stage 2), and the Middle to 
Late Pleistocene low-Al alkalic magma suite (Stage 3) 
(Brenna et  al. 2015, and references therein). Presently, 
the island’s surface is predominantly covered with rocks 
from Stage 3 volcanism. Studies employing optically 
stimulated luminescence and radiocarbon dating have 
confirmed that volcanic activity persisted into the Holo-
cene (Yeo et al. 2019, and references therein).

In this study, six trachyte samples were collected from 
inner areas and the outer rim of the island, as shown in 
Fig.  1. The sampling sites include outcrops near San-
bangsan (sample JJ615-1), the Baeknokdam lake at the 
summit of Mt. Halla (JJ616-1), Yeongsil (JJ08-1), Won-
mansa (JJ08-2), Chunwangsa (JJ09-1), and Oraidong 
(JJ09-3). Drawing from previously published age data 
(Koh et al., 2013; Marsden et al. 2021), we presume that 
the Sanbangsan and Wonmansa trachytes formed during 
Stage 1, whereas the Baeknokdam, Yeongsil, and Chun-
wangsa trachytes are associated with Stage 3. The age 
of the Oraidong trachyte remains undetermined. Addi-
tional file 1: Table S1 provides detailed information about 
these trachytes, encompassing the GPS coordinates, rock 
types, mineralogy, and texture.

Analytical methods
The major and trace element concentrations of the tra-
chyte whole-rocks were analyzed at Actlabs (Canada) 
using the combination of X-ray fluorescence spectrome-
try for fused glass beads and quadrupole ICPMS and ICP 
optical emission spectrometry for dissolved solutions of 
the beads.

Zircon grains were extracted through conventional 
sieving, magnetic, and heavy liquid techniques, and 
then embedded in epoxy along with reference materi-
als including the 91500, 61.308 (Wiedenbeck et al. 1995, 
2004), Plešovice (Sláma et  al. 2008), Penglai (Li et  al. 
2010), FC-1 (Paces and Miller Jr 1993), Temora 2 (Black 
et  al. 2004), and LKZ-1 (Cheong et  al. 2019) zircons. 
The polished surfaces of the zircons were analyzed using 
a scanning electron microscopy (JEOL JSM-6610LV) 
at the Korea Basic Science Institute (KBSI) to obtain 

cathodoluminescence (CL) and backscattered electron 
images. For isotopic analysis of U, Th, and Pb, a Plasma 
II MC-ICPMS (Nu Instruments) with a 257  nm femto-
second LA system (Excite Pharos, Teledyne Cetac) was 
utilized at the KBSI. The instrument’s operational param-
eters are summarized in Additional file 2: Table S2. The 
obtained data were processed using the Iolite 2.5 soft-
ware within the Igor Pro 6.3.5.5 program (Paton et  al. 
2011). Weighted mean ages were calculated using the 
Isoplot 3.75 program (Ludwig 2012) and are reported at 
the 95% confidence level.

For zircon U-Th dating, signal intensities were simul-
taneously measured using Faraday collectors (for 
238U and 232Th) and ion counters (for 230Th and 228 
mass). The measured 238U/232Th ratios were corrected 
based on the recommended values of the 91500 zir-
con ([U] = 80.0 μg/g, [Th] = 29.9 μg/g; Wiedenbeck et al. 
2004). The 238U and 232Th counts of the 91500 zircon 
were employed to approximately determine U and Th 
concentrations in the sample spots. The peak intensity 
of 228 mass was used for correcting the contribution of 
molecular zirconium sesquioxide ions to the 230Th peak 
(Guillong et al. 2015, 2016; 230 mass = 90Zr92ZrO3

+ + 91Z
r2O3

+  = 0.7142 × 228 mass (= 90Zr2O3
+), while maintain-

ing  ThO+/Th+ below 0.005. The peak tail of 232Th, the 
relative sensitivity between U and Th, and the Faraday-
ion counter efficiency were collectively corrected based 
on the assumption that the Plešovice zircon (206Pb/238U 
age = 337  Ma; Sláma et  al. 2008) is in 238U-230Th secu-
lar equilibrium. Radioactivity ratios were calculated 
using the decay constants proposed by Steiger and Jäger 
(1977) (for 238U and 232Th) and Cheng et  al. (2013) (for 
230Th). After implementing the necessary corrections and 
calibrations, we confirmed that the radioactivity ratios 
of (230Th/232Th) and (238U/232Th) for the 91500, FC-1, 
Temora 2, and LKZ-1 standards plotted on the equiline 
(Additional file 6: Fig. S1).

For U-Th-Pb dating, signal intensities were measured 
simultaneously with Faraday collectors (for 238U and 
232Th) and ion counters (for 208, 207, 206, 204Pb and 202Hg). 
To ensure accurate representation of rapidly transient 
signals during LA sampling, a peak hopping protocol was 
implemented. Instrumental mass bias and elemental frac-
tionation, as well as Faraday-ion counter efficiency, were 
collectively calibrated against the 91500 zircon data. The 
isotopic ratios of the 91500 zircon reported in Wieden-
beck et  al. (1995) were used for this calibration. Each 
analysis cycle comprised 30  s of measuring the instru-
mental background by analyzing the carrier gas, followed 
by a 30-s ablation event, resulting in a total analysis time 
of approximately 2 min.
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Results and discussion
Whole‑rock composition
Additional file 3: Table S3 presents the chemical compo-
sitions of the trachyte whole-rocks. The  SiO2 contents in 
these samples range from 59.38 to 65.16 wt. %, accompa-
nied by corresponding total alkali contents  (Na2O +  K2O) 
ranging from 9.12 to 11.33 weight %. Following the nam-
ing scheme of Middlemost (1994), the trachyte samples 
are designated as either trachyandesite (sample JJ09-3) or 
trachyte (for the other samples). Based on the  K2O ver-
sus  SiO2 relationship (Le Maitre et al. 1989), these sam-
ples consistently belong to the shoshonite series. The 
observed enrichment of large-ion-lithophile elements 
relative to mid-oceanic ridge basalts and light rare earth 
element-enriched chondrite-normalized pattern align 
with the general characteristics of oceanic island basalts 
(Sun and McDonough 1989). The Th/U ratios span a rela-
tively narrow range between 3.91 and 4.85.

Zircon morphology and CL texture
Figure  2 displays representative CL images of separated 
zircon grains. The majority of the grains exhibit CL tex-
tures that indicate their primary magmatic origin, and 
they remain mostly non-metamict, unaltered, and lack-
ing xenocrystic cores. Zircon crystals from sample JJ615-1 
are transparent or translucent, appearing as euhedral to 
subhedral prismatic shards with lengths of up to 200 μm. 
Under CL, they display sector or banded zoning, upon 
which oscillatory zoning is imposed. While some shards 
are unzoned and appear homogeneous in CL, most 
exhibit clear zoning patterns. In contrast, JJ616-1 zir-
cons are transparent and vary in shape from equant to 
prismatic crystals, ranging in length from approximately 
150 to 300 μm. The majority of these grains show evident 
oscillatory zoning under CL. Zircons from sample JJ08-1 
appear transparent or pale brown in color, exhibiting 
euhedral to subhedral crystal faces with lengths ranging 
between 100 and 200 μm. Most grains show faint to clear 
oscillatory zoning, while some display resorption patterns. 
Needle-shaped inclusions, likely apatite, are frequently 
observed within the grains. Zircons in sample JJ08-2 are 
transparent to translucent pale brown crystals, varying 
in size from < 50 to 300  μm. The grains exhibit euhedral 
to anhedral faces, and most of them display clear or faint 
oscillatory zoning under CL. Zircons from sample JJ09-1 
are long prismatic euhedral grains, with lengths reaching 
up to 300  μm. Needle-shaped inclusions are frequently 
observed within the grains. Under CL, oscillatory or sec-
tor zoning is observed in most grains. JJ09-3 zircons are 
mostly transparent, appearing as euhedral prismatic or 
subhedral crystals, with lengths between 100 and 200 μm. 
Sector or oscillatory zoning is observed under CL, and 
some grains contain needle-shaped inclusions.

U‑Th dating
The U-Th concentrations and radioactivity ratios of the 
zircons are provided in Additional file  4: Table  S4. Zir-
cons from sample JJ616-1 near the Baeknokdam lake 
exhibit moderate to high U (525 ± 252 μg/g, one standard 
deviation, same hereafter unless otherwise noted) and Th 
(653 ± 469  μg/g) concentrations, with (238U/232Th) activ-
ity ratios ranging from 1.74 to 4.06. These zircons yield a 
weighted mean 238U-230Th age of 28.7 ± 1.6 ka (n = 56/64, 
mean squared weighted deviation (MSWD) = 3.8) as 
shown in Fig. 3. Considering the preserved typical igne-
ous texture in these zircons, as well as in those from other 
samples (Fig. 2), this age is believed to represent the mag-
matic crystallization. Previous studies near Baeknokdam 
lake have utilized various dating methods, such as opti-
cally stimulated luminescence (Ahn and Hong 2017) and 
the zircon double dating method (Marsden et  al. 2021), 
which combines U-Th-Pb and (U-Th)/He techniques. 
The results of these studies ranged from 78 to 2 ka, with 
a concentrated population between approximately 30 and 
20 ka. Our data further support the significance of ~ 30 ka 
magmatism in the formation of trachyte magma beneath 
Mt. Halla.

Zircons from sample JJ08-1 yield a weighted mean 
238U-230Th age of 81.8 ± 10.9 ka (n = 11/12, MSWD = 1.6) 
(Fig.  3), with moderate U (428 ± 343  μg/g) and Th 
(440 ± 367 μg/g) concentrations. Sample JJ08-1 was taken 
from the same outcrop containing the SS14-28 zircon 
standard, which has a recommended 238U-230Th age of 
82 ± 6  ka (Marsden et  al. 2022). Our data provide addi-
tional analytical results supporting that age.

JJ09-1 zircons provide a weighted mean 238U-230Th age 
of 92.6 ± 4.6  ka (n = 49/51, MSWD = 2.2) (Fig.  3), with 
moderate U (307 ± 197  μg/g) and Th (299 ± 366  μg/g) 
concentrations. The sampling locality is the same as 
for sample HS100-5 in Marsden et  al. (2021), which 
yielded comparable U-Th dates ranging from 87 ± 23 
to 168 ± 117  ka, with a mean of 111 ± 14  ka. Zircons 
from sample JJ09-3 yield a slightly older weighted mean 
238U-230Th age of 117.6 ± 8.2 ka (n = 48/50, MSWD = 3.2) 
(Fig. 3). They also have moderate U (263 ± 188 μg/g) and 
Th (295 ± 284 μg/g) concentrations.

Our U-Th zircon ages further support the Late Pleisto-
cene magmatic events on Jeju Island as revealed by previ-
ous studies (Koh et al. 2013; Marsden et al. 2021).

U‑Th‑Pb dating
The zircon U-Th-Pb isotope data are listed in Addi-
tional file  5: Table  S5. The results are discussed below, 
considering common Pb and radioactive disequilibrium 
correction.

For the Penglai reference zircon, the fTh/U (Eq.  1) var-
ies from 0.07 to 0.15, with an average of 0.12 ± 0.03, 
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assuming that the magma Th/U ratio is the same as that 
reported for the host basalt (Th/U = 4.09; Ho et al. 2000). 
Applying the scheme proposed by Sakata (2018), the 
disequilibrium- and common Pb-corrected weighted 
mean 238U-206Pb age is determined to be 4,226 ± 21  ka 
(n = 22/25, MSWD = 3.8), as shown in Fig. 4. In this cal-
culation, 30% error was assigned to fTh/U. The fPa/U (Eq. 3) 
and common 207Pb/206Pb ratio were assumed to be 

3.50 ± 1.05 and 0.84 ± 0.05, respectively. This corrected 
age aligns well with the recommended 238U-206Pb age of 
4.29 ± 0.05  Ma, as recently reported by further evalua-
tion for the Penglai zircon (Yu et  al. 2020). The fraction 
of common 206Pb  (f206Pbc), based on the 207Pb/206Pb ratio 
on the normal concordia at the corrected 238U-206Pb 
age, ranges from 5 to 15%. Notably, considering only the 
 f206Pbc, the 238U-206Pb dates yield a distinctly younger 

JJ615-1 (Sanbangsan)

JJ616-1 (Baeknokdam)

JJ08-1 (Yeongsil) JJ08-2 (Wonmansa)

JJ09-1 (Chunwangsa) JJ09-3 (Oraidong)

Fig. 2 Representative cathodoluminescence images of Jeju zircons. Scale bars represent 100 μm. Certain grains from samples JJ615‑1 and JJ616‑1 
exhibit remnants of analytical spots
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weighted mean of 4,118 ± 22 ka (n = 22/25, MSWD = 5.7), 
confirming the significance of disequilibrium correction. 
The 232Th-208Pb dating may be less impacted by the dis-
equilibrium effect. However, it should be noted that the 
measured 208Pb/206Pb ratios of the zircons and assumed 
common Pb ratio (= 2.0658; Stacey and Kramers 1975) 
indicate much higher fractions of common 208Pb  (f208Pbc) 
ranging from 39 to 79%. The 207Pb-corrected 232Th-208Pb 
dates are scattered between 2.8 and 4.2  Ma, appearing 
much younger than the corrected 238U-206Pb age. This 
discrepancy principally resulted from high common Pb 
fraction, and the uncertainty in the common Pb isotopic 
composition. To achieve a more precise measurement of 
the Th-Pb age, it is essential to know the exact 208Pb/206Pb 
ratio of the common Pb in order to accurately determine 
the  f208Pbc (= [(208Pb/206Pb)common/(208Pb/206Pb)measured] ×  f
206Pbc).

As depicted in Fig.  4, the 61.308 zircon yields a dis-
equilibrium- and common Pb-corrected weighted mean 
238U-206Pb age of 2,488 ± 20  ka (n = 19/20, MSWD = 1.8) 
when assuming a magma Th/U ratio of 3.89 (the average 
Th/U of upper continental crust; Rudnick and Gao 2003). 
The 207Pb-corrected common Pb fraction is determined to 
be 13–51% for 206Pb and 42–95% for 208Pb. It is worth not-
ing that the 61.308 zircon initially consisted of three crystals 
(Wiedenbeck et al. 1995). The grains analyzed in this study 
may correspond to 61.308A, given their U (170 ± 85 μg/g) 
and Th (179 ± 151 μg/g) concentrations. The thermal ioni-
zation mass spectrometric 238U-206Pb and 232Th-208Pb 
ages of 61.308A zircon were reported as 2,488 ± 4 and 
2,538 ± 10 ka, respectively (Wiedenbeck et al. 1995), which 
align with our measurements. Similar to the Penglai zircon, 
the 232Th-208Pb dates of 61.308 zircon exhibit significant 
scatter and appear to be younger than the 238U-206Pb age.
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Fig. 3 Uranium–thorium isochron plots for Jeju zircons. The dashed gray lines depict the equiline. The open circles indicate outliers identified 
through the calculation of weighted mean age. Error bars represent 2 standard errors
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The same correction scheme results in weighted mean 
common Pb and disequilibrium-corrected 238U-206Pb ages 
of 785 ± 5  ka (n = 27/28, MSWD = 0.90) and 743 ± 8  ka 
(n = 28/30, MSWD = 0.79) for the JJ615-1 and JJ08-2 zir-
cons, respectively (Fig.  4). The fTh/U values were deter-
mined using the whole-rock Th/U ratios, and the fPa/U 
and common Pb isotopic compositions were assumed 
to be consistent with those used for dating the Penglai 
and 61.308 zircon. The 207Pb-corrected  f206Pbc is notably 
higher in the JJ08-2 zircons (0.44 ± 0.13) compared to the 
JJ615-1 zircons (0.11 ± 0.06). Despite the high common 
Pb fraction, the JJ08-2 zircons show a good fit of the mix-
ing line between the radiogenic and common Pb (Fig. 4). 
On the other hand, the 207Pb-corrected 232Th-208Pb dates 
of JJ615-1 zircons (727 ± 11  ka, n = 28, MSWD = 26) are 
younger and more scattered compared to the corrected 
238U-206Pb dates. The Th-Pb dating method was not 
applicable for JJ08-2 zircon because 208Pb in this zircon is 

predominantly composed of common Pb (average > 95%). 
The zircon U-Pb age of sample JJ615-1 marginally agrees 
with the whole-rock Ar-Ar age (802 ± 5 ka; Koh et al. 2013) 
of a trachyte collected from the Sanbangsan area. Interest-
ingly, this age corresponds to the timing of the Matuyama/
Brunhes magnetic reversal, defining the Early-to-Middle 
Pleistocene boundary (~ 780  ka). The zircon U-Pb age of 
sample JJ08-2 falls within the range of zircon  dates (377–
988 ka; Marsden et al. 2021) reported for a trachyte lava 
collected from the same locality.

Concluding remarks
This study employed femtosecond laser-connected MC-
ICPMS to determine the U-Th and U-Th-Pb ages of Pleisto-
cene zircons collected from Jeju Island, Korea. The obtained 
ages for these zircons and reference materials generally 
agree with the previously recommended ages. Our find-
ings underscore the importance of applying radioactive 
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disequilibrium correction when dating young (< 5 Ma) zir-
cons. Further investigations are required to enhance zircon 
Th–Pb dating by accurately measuring the common Pb iso-
topic composition.
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