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Abstract

Chlorpyrifos (CPF) is an extensively used organophosphate pesticide for crop protection. However, there are
concerns of it contaminating the environment and human health with estimated three lakh deaths annually.
Detection of CPF in blood samples holds significance to avoid severe health outcomes due to continuous
exposure. The most common techniques for CPF detection are Gas chromatography (GC) and high-performance
liquid chromatography (HPLC). However, these techniques might not be feasible at the community healthcare level
due to high-cost instrumentation, time-consuming sample preparation protocol and skilled analysts. Therefore,
rapid, effective and economical methods such as immunoassay would be imperative for CPF detection in biological
samples. The vital step in immunoassay development is the design of a potent immunogen from non-
immunogenic molecules. The molecular modelling protocol could assist in redesigning known CPF linkers and
inserting them at different substitutable positions of CPF to get distinctive CPF derivatives. Molecular docking and
binding free energy analysis can be used to identify the CPF derivatives having a better binding affinity with carrier
protein compared to CPF. The top-ranked CPF derivatives based on docking score and binding energy could be
ideal for synthesis and immunogen development. The present review will comprehend technological trends in
immunoassay kits for detecting chlorpyrifos from biological samples.

Keywords: Chlorpyrifos, Gas chromatography, Immunoassay kit, Molecular modelling, Organophosphorus,
Pesticides

Introduction
Pesticides are chemical compounds, such as insecticides,
fungicides, molluscicides, rodenticides and nematicides,
used to kill or control the organisms, fungi and other
such life forms that not only damage the irrigated crops
and vegetables but cause ill effects to domestic animals
and human beings (Amaral AFS 2014; Bhadekar et al.
2011; Dar et al. 2019) (Fig. 1). Pesticides improve agrar-
ian production, food quality, and the financial status of

cultivars. However, the unrestrained application of pesti-
cides has caused environmental distress/degradation
propagating to several health concerns (Ragnarsdottir
2000).
Organophosphorus (OPs) compounds are among one

of the commonly used pesticides for farming and do-
mestic purposes. OPs have moderately low persistence
in the atmosphere but their usefulness is counterba-
lanced by severe toxicity to human well-being and the
ecosystem (Mauriz et al. 2006). CPF is considered to be
an insecticide which has quite a broad spectrum and it
has been used quite frequently to prevent the growth of
different insect species and specifically the arthropods
on crops which are important to mankind. In urban set-
tings, it is viably utilized on lawns, ornamental plants
and pet items. CPF is a fluid material in its regular state
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and latent exposure occurs through inhalation, ingestion
and dermal absorption (Fig. 2). Subsequently, its expos-
ure could lead to acute to chronic health issues such as
paresthesia, light-headedness, tachycardia (Rathod and
Garg 2017), cancer (Alavanja and Bonner 2012), neuro-
logical diseases (Grandjean and Landrigan 2014), adverse
reproductive outcomes (Rim 2017) and respiratory dis-
eases (Nicolopoulou-Stamati et al. 2016). Thus, monitor-
ing of OP residues can be considered a significant step
for the welfare of human society and it should be regula-
tory control at the national and international trading
levels.
With recent advances in research, many techniques are

available which helps in the qualitative analysis of pesti-
cides; few of the very helpful techniques are gas and high-
performance liquid chromatography (HPLC), LC-MS
(Ravelo-Pérez et al. 2006; Stachniuk and Fornal 2016).
These techniques are commonly used for monitoring pes-
ticides but have so many drawbacks such as high-cost

instruments, time-consuming procedures, require skilled
analysts and at the same time not well versed with the on-
spot analysis of different parameters. In contrast, when it
comes to high number samples and in few cases where
on-site screening is required, immunoassays are one of
the most powerful techniques (Beyene et al. 2019). In this
regard, immune assay-based kits could be useful for mass
screening of CPF concentration at the community level.
Immunoassays are a quantitative technique which uti-

lizes the specific interaction between specific epitopes
present on antigens and the binding affinity of anti-
bodies; they help in the detection and measurement of
large-size molecules like proteins as well as small mole-
cules (drugs, pesticides) (Wang et al. 2018). Immuno-
assay, viz. ELISA (enzyme-linked immunosorbent
assays), has simplicity, cost-effectiveness, high selectivity
and specificity in detecting analytes from biological or
environmental specimens, hence are being widely used
for pesticide detection in recent times (Ivanov 2019).

Fig. 1 General classification of pesticides
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Most pesticides including chlorpyrifos are low-
molecular-weight compounds (less than 1000 Dalton)
and lack epitopes, hence are not capable of eliciting an
immunogenic response to produce antibodies (Cui et al.
2018). These small molecules are referred to as haptens;
those could be easily altered at particular and specific
positions so that a functional group could be inserted to
make it more active. Further, in some cases, few deriva-
tives of haptens can be linked with carrier proteins
which could help in developing more powerful and im-
munogenic haptens (hapten-linker-carrier protein) that
would generate specific antibodies against the chemical
compound (Zeng et al. 2016; Singh et al. 2004). Design
of linkers (Table 1), attachment of specific linker to a
position of choice on the hapten and coupling it with
the carrier are key steps for immunoassay design for pes-
ticides. Computer-aided immunoassay design can in fact
help to simulate all these critical steps such that the
hypothetical immunogen with a high probability of pro-
ducing required titres of antibodies in an animal model
can be selected for synthesis in vitro. In this review, a

computer-aided immunoassay design for chlorpyrifos
has been discussed.

Development of an ELISA for chlorpyrifos
There are commercially available kits for CPF detection
(Creative Diagnostics, Ohmicron and Millipore) along
with several investigational immunoassays. These kits
provide insights on positions of CPF explored for chem-
ical modification, choice of the linker with the active
functional group and carrier proteins for developing an
immunogen.

Structure of CPF
Chlorpyrifos belongs to a category of organic thiopho-
sphate. The hydrogen of the hydroxyl group of O, O-
diethyl hydrogen phosphorothioate usually gets changed
with 3, 5, 6-trichloropyridin-2-yl group (Koshlukova and
Reed 2014) (Fig. 3a). The molecular structure of CPF
lacks active functional groups, viz. –COOH, –NH2, –
OH, –SH2 etc.; therefore, it cannot be conjugated with
the carrier in the process of immunogen preparation as

Fig. 2 Route of pesticide exposure in human population
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its structural features could easily get affected by the car-
rier protein micro-environment (Song et al. 2010). It ne-
cessitates CPF to be redesigned with the appropriate
linker at specific sites in such a manner that it maintains
the original molecular structure while making the hap-
ten exposed on the surface of the carrier. The reason be-
hind this phenomenon is that a molecule against which
antibodies are to be made should be exposed, and in the
same manner, a hapten should be easily available to the
immunized cells of an organism in order to activate cells

like T cell and B cell which in turn will provide anti-
bodies which are highly specific towards the antigen.

Prospective sites for linker attachment
Primarily, two positions on chlorpyrifos have been dedi-
cated for the site of attachment of linkers; first, one is at
the 6th position on the aromatic ring and the other at
the thiophosphate group by replacing o-ethyl in conjuga-
tion to a compatible linker while keeping the pyridyl ring
undisturbed (Goel 2013). Manclus et al. (1994),

Table 1 Designed linkers to add immunogenicity to chlorpyrifos based on available literature

S.No. Derivatives Reference

1. R2−NH (CH2)nCOOH (Edward et al. 1993; Cho et al. 2002; Brun et al. 2005),

2. R5−S(CH2)n COOH (Goel 2013; Manclus et al. 1994; Manclus 1996; Brun et al. 2005; Alcocer et al. 2000; Sharma and Kocher 2013; Manclus
et al. 1996)

3. R5− O(CH2)nCONH (Lawruk et al. 1996)

4. R4− OCNH(CH2)n
COOH

(Alcocer et al. 2000; Manclus et al. 1996)

5. R1←O (Manclus et al. 1996)

6. R3−CH2COCOOH (Jones et al. 2014)

7. R3-CH3N(CH2)nCOOH (Alcocer et al. 2000)

8. R4−NH(CH2)n-OH (Brun et al. 2005)

9. R3−NH(CH2)n COOH (Hua et al. 2010; Kim et al. 2011; Liu et al. 2011; Qian et al. 2009; Wang et al. 2007; Liu et al. 2016; Maftouh et al. 2017)

10. R3−CH3N(CH2)n
COOH

(Kim et al. 2011)

11. R3-
NHCH2C6H6COOH

(Kim et al. 2011)

Fig. 3 a Structure of chlorpyrifos. b Structure of chlorpyrifos with linker position (R1–R5)
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additionally, in their study, modified the pyridyl moiety
at the 3rd and 5th chlorine positions; however, these
modifications failed to yield any significant antibody titre
by the designed immunogen (Manclus et al. 1994).
Hence, there are five prospective positions for the substi-
tution of linkers, viz. sulphur (R1) and o-ethyl (R2 and
R3) in thiophosphate groups, nitrogen and 6th chlorine
in the pyridyl ring (Fig. 3b).

CPF linkers
In the past, various groups have attempted the construc-
tion of immunoassay kits in different matrices (Table 2).
Edward (1993) while developing an immunoassay kit for
grains has replaced o-ethyl at the thiophosphate moiety
with NH(CH2)nCOOH in the CPF structure resulting in
higher sensitivity and found it to be precisely more ac-
curate than earlier monoclonal assays (Edward et al.
1993). Manclus (1994) used two kinds of linkers
NH(CH2)nCOOH and S(CH2)nCOOH on CPF; those
could produce antibodies with high specificity and sensi-
tivity in water samples for CPF detection. This study
highlighted that the highly specific antibodies should be
based on specific features which are unique to the par-
ticular antigen and functional groups of the CPF apart
from modification at the structural sites of the hapten
(Wang et al. 2015). Manclus and Montoya (1996) de-
signed two types of haptens, depending upon the attach-
ment of the spacer arm, viz. the aromatic ring and
thiophosphate group. The aromatic ring was altered by
the introduction of different lengths of alkyl mercapto
acid (S(CH2)nCOOH), chlorpyrifos oxon or chlorpyrifos
methyl by the addition of an amino acid at the spacer
arm. However, any modification of the alkyl mercapto
acid through the aromatic ring resulted in better affinity
and high specificity. Moreover, they also prepared hap-
tens by the addition of alkyl ω-amino acids (−CH2)n of
different length as ester or amide linkage of thiopho-
sphate group and also a constructed a hapten with
phenyl (C6H5) instead of a pyridyl aromatic ring among
which (o-ethyl O-(3,5,6-trichloro-2-pyridyl) N-(5-car-
boxyethyl)-phosphoramidothioate and O-ethyl O-(3,5,6-
trichloro-2-pyridyl) N-(5-carboxypentyl) phosphorami-
dothioate) resulted in increased specificity and sensitivity
(Manclus 1996). Lawruk (1996) replaced chlorine at the
6th position with CO(CH2)4CONH of pyridyl ring. This
alteration allowed the selective nature of antibodies
which are called monoclonal antibodies as they for
chlorpyrifos detection in the different sort of products
whether they are degrading or other pesticides of a dif-
ferent category like organophosphates (Lawruk et al.
1996). In a patent obtained by Jones et al (1997),
–(CH2)2COOH was added at the thiophosphate moiety
and antibodies generated produced a high degree of spe-
cificity. Chemical substitution of S with O also played a

significant part in the formation of antibody-binding
sites (Reynoso et al. 2019).
Cho and co-workers published in their research paper

which got published in the year 2002 used
NH(CH2)nCOOH, CH3N (CH2)3COOH and
NHCO(CH2)4COOH as linkers to synthesize immuno-
gens. NH(CH2)nCOOH was noted to be successful in
producing antibodies in the animal model after coupling
with carrier protein (Cho et al. 2002). Brun (2005) de-
signed five hapten derivatives by exploring two sites of
the CPF structure for the addition of linkers: the pyridyl
ring and the thiophosphate moiety. On the pyridyl ring,
–Cl was replaced by S(CH2)nCOOH by nucleophilic sub-
stitution reaction, and on the thiophosphate moiety,
NH(CH2)nCOOH was introduced; thus, it was proven to
be highly specific antibodies for other organophosphorus
compounds (Brun et al. 2005). Alococer (2000), Goel
(2013) and Sharma & Kocher, (2013), in similar studies,
used linkers S(CH2)nCOOH to get antibodies with huge
sensitivity and selectivity (Goel 2013; Alcocer et al. 2000;
Sharma and Kocher 2013). In order to make an ELISA
kit for organophosphorus pesticides like chlorpyrifos, the
point to keep in mind is the hapten to be conjugated
with the aromatic hydrophobic ring coupled to pesti-
cides. When you follow this procedure, various groups
successfully designed haptens by the addition of the
linker to the thiophosphate moiety by NH (CH2)3COOH
of the target compound and the assay had great sensitiv-
ity (Wang et al. 2018; Cho et al. 2002; Hua et al. 2010;
Kim et al. 2011; Liu et al. 2011; Maftouh et al. 2019;
Qian et al. 2009).
The existing instances suggest that selecting different

modification sites for hapten preparation would produce
several artificial immunogens having different affinity
and specificity. The immunogen maintaining the most
complete structure is likely to generate efficacious anti-
bodies. The hapten derivative in the coating antigen
should share close structural similarity with CPF to
make the ELISA kit with good selectivity and specificity.

Hapten derivative synthesis
Practically, it is feasible to synthesize the hapten deriva-
tives from existing hapten, its intermediate or metabo-
lites. Majority of haptens for OP chemicals, such as
chlorpyrifos, parathion, paraoxon and phosalone can be
formed from the relevant intermediates, metabolites and
raw materials (Kim et al. 2003; Shim et al. 2008; Wang
et al. 2017). Among the above three methods, re-
synthesis is the most tedious method as it involves
multi-step reactions, but is advantageous for the appro-
priate site as well as linking spacer for hapten modifica-
tion and coupling with the carrier, respectively, which
have the higher probability of producing antibodies
which are higher in affinity and specific from the
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perspective of characteristic features (Song et al. 2010;
Rajesh et al. 2013). Once the hapten derivative is ready,
one should check its structural details with the help of
different biophysical techniques.

Linking spacer
The linking between the hapten and carrier can be
established by using a linking spacer that highlights the
groups on the hapten which have the ability of activating
the host’s immune system. The basic principle for
choosing the linker involves positioning the linker with a
suitable length far from the functional groups (Bellemjid
et al. 2018; Ning et al. 2018). Linkers, those that are too
short, would likely change hapten property due to steric
hindrance while linkers with too long spacers would
likely be subjected to folding (Mercader et al. 2020; Song
et al. 2010). Kim (2003) keeps the fact that approxi-
mately optimal spacer arm contains 4–8 carbon atoms
(Kim et al. 2003). For instance, in order to produce the
different derivatives of hapten with CPF, Manclus (1996)
utilized a spacer arm with a five-carbon chain, while
(Manclus et al. 1996) Cho (2002) used the spacer arm
with only two carbons in length (Cho et al. 2002). The
spacer arm shall not be comprised of few groups like the
aromatic ring, conjugated double bonds or heterocyclic,
etc. because in that case, the antibody would bind with
the spacer arm more strongly contrary to the target ana-
lyte (Ertekin et al. 2018).

Carrier proteins
With hapten–carrier conjugates (e.g., artificial antigens),
properties of the carrier should be stable, facilitate the
transport of hapten and also increase the relative mo-
lecular weight of the antigen to stimulate the immuno-
genic reaction of the immunized organism, which can
act against the haptens (Zhao et al. 2016). Once the hap-
ten is synthesized, it should be linked to an appropriate
protein through a conjugation method such as covalent
bonding between functional groups of N-terminal or C-
terminal of haptens and side chain of amino acids, such
as lysine, aspartic, glutamic, imidazo and the phenolic
functional group of histidine and the tyrosine residues,
respectively, and sulphhydryl groups of cystein residues
(Shim et al. 2010). Among the different carriers proteins
such as bovine serum albumin (BSA), ovalbumin (OVA),
keyhole limpet hemocyanin (KLH), rabbit serum albu-
min (RSA), human serum albumin (HSA), thyroglobulin
(TG), fibrinogen and rabbit and chicken gamma globu-
lin, BSA is a first choice for these procedures as it has
highly stable physico-chemical properties, such as a good
number of lysine and other free amino acids on the sur-
face, besides that it has coupling advantage with the hap-
ten in the solution containing organic solvents (such as
pyridine, N, N-dimethylformamide) (Chen et al. 2021).

KLH is excellent as it is very heterogenic in nature and
heterogeneity is one of the key factors when it comes to
eliciting the immune system of vertebrates, but it also
has one problem as it is quite expensive. From the re-
cent advancement in this area, it has been noticed that a
synthetic polypeptide could be used as a carrier as it en-
hances the immunogenicity of the hapten-protein conju-
gate (Satija and Shalek 2014).

Computational-based approach for hapten design
Primarily, traditional hapten design (hapten and linker
ligation) in immunoassay kit development follows the
trial and error method (Yang et al. 2020). Therefore, all
designed molecules are required to be synthesized, con-
jugated and used to immunize animals. Despite labori-
ous and time-consuming series of experiments, many
designed haptens fail to form stable immunogens or
generate antibodies with high affinity and specificity,
hence becoming inapt for developing and useful im-
munoassay kits (Li et al. 2015; Muldoon et al. 2000).
The failures are likely to be attributed to designing hap-
tens with low binding affinity towards carrier proteins or
incomplete understanding of epitope structure and its
interactions with paratope (Qaraghuli et al. 2015).
Therefore, the implementation of computer-assisted mo-
lecular modeling could deliver a rational hapten design.
This would aid the design of a large set of hapten deriva-
tives both structurally and electronically most similar to
the target analytes. Subsequently, computational docking
and molecular dynamics simulations could further help
in the selection of fewer but suitable hapten derivatives
for synthesis based on better and stable binding affinity
towards carrier proteins. The top-ranked stable immu-
nogen upon synthesis in vitro is more likely to succeed
in producing antibodies with high affinity and specificity
in animals in contrast to the conventional approach (Xu
et al. 2011).

Structural modification of pesticides
Hapten and antigen
CPF is a small molecular compound which is called a
hapten. It possesses a molecular mass of 350.6 g/mol.
CPF structure could be redesigned by addition of active
functional groups such as –COOH, –NH and –OH at
five different positions of the target compound. The
studies have proposed that the redesigned structure
should possess similar physicochemical properties
(Gefen et al. 2015; Wang et al. 2007; Jin et al. 2005).
Another probable concept was anticipated by Xin et al

(2010) that a polyclonal antiserum would be produced in
the presence of an immunogenic complex conjugated
with multitudinous hapten molecules against the same
carrier protein (Xin et al. 2010). Edward (1993) designed
the hapten molecule chlorpyrifos-methyl in which the
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linker group is attached to the thiophosphate moiety of
the target compound and that assay had great sensitivity
(detection limit = 0.02 ppm in grain) (Edward et al.
1993).
The hapten structure plays a critical role in antibody

production and quality (Kim et al. 2003). And the same
is depicted in Table 2, that functional regions of CPF
molecules are located at thiophosphate moiety and 6th
position of the target molecule. In addition to the struc-
ture, Zhang (2010) proposed the important role of
hydrophobic interaction in the antigen and antibody
binding based on quantitative structure-activity relation-
ship (QSAR) techniques along with comparative molecu-
lar field analysis (CoMFA) to predict the cross-reactivity
(CR) of the PAHs in ELISA (Zhang et al. 2010). Liu
et al. (2016) believed that some specific coupling sites
and bonds would affect the production of antibodies.
They chose the thiophosphate moiety for the attachment
of the linker at the target molecule they succeeded in
obtaining a monoclonal antibody with a detection limit
of (LOD) 0.32 ng/ml and I50 of 75.22 ng/ml (Liu et al.
2016). Spier (2009) found that conformational changes
of the career protein result in the internalization of
the hapten within the hydrophobic pockets and thus
might restrict the accessibility of the antibody and
this would cause lowering the detection limit of the
antibody (Spier et al. 2009). Therefore, redesigning
known CPF linkers and placing them at five substitut-
able positions of CPF (R1-R5) generate 258 unique
CPF derivatives (Table 1).

Conjugates
Apart from inducing immunogenicity by increasing the
relative molecular weight, a hapten-carrier conjugate
also assists hapten immobilization to develop immuno-
assay hapten-carrier conjugates (Ramin and Weller
2012). The method of binding is determined with the
help of active groups for pesticide antigen synthesis:(1)
coupling of carboxyl-containing haptens with the carrier
using N-hydroxysuccinimide active ester/carbon-diimine
or woodward reagent protocol (Cheng et al. 2009; Gui
et al. 2006; Yan et al. 2009); (2) coupling of amino-
containing haptens with the carriers in the presence of
glutaraldehyde, diisocyanate, halo-nitrobenzene, diimine
ester, or diazotization protocol (Pu et al. 2008; Strasser
et al. 2003); (3) coupling of hydroxyl-containing haptens
with the carrier through the succinic anhydride or azo-
benzoic acid protocol (Han et al. 2007); (4) Linking of
carbonyl-containing haptens (ketone or aldehyde) with
the carriers using the amino-ox-acetic acid protocol
(Goel 2013). These methods are time-taking and labori-
ous, and also, these methods may lack some features
useful in developing immunoassays. Through CAMM
(computer-assisted molecular modeling), we can

conjugate carrier proteins with haptens by molecular
docking studies. The binding affinity of hapten-carrier
protein conjugates can be determined by docking score
as well as free energy calculation (prime MM-GBSA
method) (Sotriffer et al. 2000). Molecular docking is a
technique which predicts the preferred orientation of
one molecule to another to form a stable complex. It al-
lows predicting the three-dimensional shape of a mol-
ecule such as the length, depth, dihedral angle and
superimposition of a hapten with the target compound,
several bonds formed in antibody-antigen interaction
and electron density distribution and can contribute
substantially to the understanding of recognition. It will
help in choosing one of the finest haptens from the
group of hypothetical immunizing haptens in order to
produce immunoassays which are highly sensitive as well
as selective in their function. (Xu et al. 2015). There are
several docking programmes available to approximate
the binding affinity of protein-ligand interaction. Glide is
one such docking programme that uses an empirical
scoring function—glide score. It is designed to exhaust
the possibilities of separation of complexes with stout
binding affinity from those with petite to no binding
ability. The scoring function accounts for lipophilic-
lipophilic interactions, hydrogen bond, a rotatable bond
penalty, and contributions from protein-ligand coulom-
bic and VdW energies. Furthermore, methods like mo-
lecular dynamics simulation and molecular mechanics
generalized born surface area (MM/GBSA) have become
the first choice of researchers in current times for differ-
ent evaluations like theoretical evaluation or other
methods for checking the binding of pesticides and
protein. With the help of molecular dynamics (MD)
simulations, one can deduce the versatility of a
system. MM/GBSA takes account of various decom-
position energies originating atoms or types of inter-
actions. Conformational, interactional stability of the
designed immunogen can be approximated through
molecular dynamics simulation (Mohd et al. 2018;
Yoshida et al. 2019). The top-ranked hapten-carrier
conjugate identified to form a stable complex through
CAMM can be synthesized and used for antibody
generation to develop immunoassays. Accordingly,
competitive indirect ELISA for fourteen O, O-diethyl
organophosphorus pesticides was developed by Xu
et al. (2010). CAMM is considered to be more feas-
ible, quick and not so expensive in terms of develop-
ing an immunoassay (Xu et al. 2010). Several sensitive
and specific immunoassays have been developed for
the determination of metamifop (Moon et al. 2007),
parathion (Shi et al. 2014), pyrethroid (Jin et al.
2017), semicarbazide (Vass et al. 2008), anti-triazine
(Delaunay-Bertoncini et al. 2003) etc. with the use of
CAMM methods.
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Verification of hapten-protein conjugates
A quality and conjunction ratio needs to be determined
after antigen preparation. The process of verification is
complex and no clear statement regarding the best ratio
is reported (Prechl 2017). However, although high com-
binations can generate desired antibody titres, it could
lead to reduced binding affinity. In order to verify the
quality of antigens, several techniques are being used like
UV spectroscopy, mass spectrometry and SDS-PAGE
(Fodey et al. 2009).

Production of antibodies
The very crucial point for an immunoassay to succeed is
to produce an antibody which shows good selectivity at
the same time-sensitive as well. The major component
of an immunoassay is its antibody. There are different
types of antibodies that are present based on the method
which was followed to produce them, for example poly-
clonal (pAb), monoclonal (mAb) and recombinant (rAb)
antibodies (Alcocer et al. 2000; Qian et al. 2009; Hon-
gsibsong et al. 2020). Generally, pAbs are specific to
many epitopes and that is why they have limited use in
biological sciences, usually prepared from the blood of
vertebrates (e.g. rabbits, goats and horses) all of which
are immunized with hapten proteins which carry several
different epitopes of which antibodies which are poly-
clonal in nature are produced (Leenaars and Hendriksen
2005). It has a low preparation cost and easy to develop
(Lipman et al. 2005). The reason behind emulsifying the
antigen and adjuvant is to make a homogenous mixture
which could be used further to immunize an organism.
In this manner, when the emulsifying solution is injected
into an organism, the cells of the immune system like B
cells and T cells start eliciting an immune response due
to which a significant number of antibodies can be re-
trieved from the serum (Hill et al. 1994). Many pesticide
immunoassays still employ polyclonal ones (Cho et al.
2002; Brun et al. 2005; Alcocer et al. 2000; Maftouh
et al. 2017) as they are quite cheap and easily available
in contrary to Mabs which are expensive.
As the name signifies, monoclonal antibodies (mAbs)

are very specific and selective in nature in comparison to
polyclonal antibodies. As they are highly specific in bind-
ing, they are being more preferred for antigen detection
of any particular protein (Yan et al. 2009). Nevertheless,
mAbs can be extensively used in practical testing owing
to their sensitivity, specificity, simplicity and rapid detec-
tion properties. But this does not mean that it has all the
solutions as it brings some limitations with it (Wang
et al. 2013). Methods which are being used to prepare
are just experiential and performed using non-
standardized procedures and experience researcher (Cer-
vino et al. 2008). While preparing the method, many fac-
tors need to be taken into consideration like dilution

factors and conditions in which cultivation took place,
for example the use of feeder cells (Jin et al. 2009). In
addition to that, single hybridoma cell clones are also
being screened first with the help of ELISA. A significant
number of cells are being lost when this strategy is used.
Hence, it is an extremely tedious and cumbersome
process in itself (Zhang and Wang 2009). In general, hy-
bridoma technology includes the immunization of mice,
a combination of B cells with myeloma cells for the B
cell deification. An assortment of antibody-producing
hybridoma emulation in the selection of medium and
scale-up antibody generation (Manclus et al. 1994; Qian
et al. 2009; Manclus et al. 1996; Liu et al. 2016) pro-
duced mAbs from the hybridoma culture. In comparison
to pAb production, mAb production is more difficult, la-
borious, time-taking and affluent.
Another method to produce antibodies is by using the

recombinant antibody procedures which is more ad-
vanced in stage. Recombinant antibodies (rAbs) or their
fragments (for example, scFv or Fab) are made by produ-
cing libraries of antibody gene fragments followed by
phage display, ribosomal display or yeast display, from
which antibodies of desired specificities and affinities tai-
lored by site-directed mutagenesis can be selected (Alco-
cer et al. 2000). By using phage display methodology,
single-chain variable fragment (scFv) antibodies have
been generated targeting a large number of pesticides in-
cluding carbaryl (He et al. 2019), methamidophos (Li
et al. 2006) and fenitrothion (Luo and Xia 2012).

Method of developing an assay
Immunoassays can be developed using obtained anti-
bodies which are based on radioactive isotopes, fluores-
cent enzymes and colloidal gold (Au) to quantify the
measurement on the basis of a signal which is easily
measurable (Yao et al. 2020). Immunoassays can be di-
vided on the labelling materials which has been used like
in radioimmunoassay (RIA) radioactive materials are be-
ing used, enzyme immunoassay (EIA) uses enzymes like
HRP, fluorescence immunoassay (FIA) uses fluoresce-
cent dyes, Chemiluminescence (CLIA) Immunosensor,
molecularly imprinted technique, and surface plasma
resonance sensing. Every analytic method has its own
unique advantages for the detection of a sample (Boro-
duleva et al. 2017; Du et al. 2014; Li et al. 2009).

Radioimmunoassay
Radioimmunoassay (RIA) uses isotope-labelled and un-
labelled antigens to react competitively in a stepwise for-
mation of immune complexes. The immunoradiometric
assay (IRMA) and RAST test (radioallergosorbent test) is
an example of an radioimmunoassay. It included both
the qualitative and quantitative tools for the detection of
pesticides, antibiotics and hormones etc. (Yucra et al.
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2008). I125 labels are usually applied although other iso-
topes such as C14 and H3 have also been used. The
most important advantages of RIA are quite precision,
sensitive, specific, and simple. RIA also has some of the
drawbacks by using radiolabelled reagents, radiation haz-
ards, labs require a special licence to handle radioactive
material, requires special arrangement for requisition,
storage of radioactive material and radioactive waste dis-
posal (Ahmed et al. 2020). Therefore, RIA-based kits
may not be advisable for CPF screening at the commu-
nity level.

Fluorescence immunoassay
In a fluoroimmunoassay, the antibodies are labelled with
fluorescent probes. After incubation with antigens, the
antibody-antigen complexes are isolated and the fluores-
cent intensity is measured to quantify the target antigen.
The commonly used fluorochromes in immunofluores-
cence are fluorescein isothiocyanate (green) and tetra-
methyl rhodamine isothiocyanate (red). FIA can be
categorized into heterogeneous and homogeneous as-
says. Either heterogeneous or homogeneous assays can
be performed in a competitive or non-competitive for-
mat (Sanchez-Martinez et al. 2007). Fluorescence
polarization fluoroimmunoassay (FPFIA) is the most
common type of assay and its principle is based on the
homogenous assay format. It quantifies the change in
fluorescence polarization of reaction mixtures of a
fluorescent-labelled tracer, sample antigen and defined
antibody. Time-resolved fluoroimmunoassay (TRFIA) is
a separate group of FIA because its principles can be
adapted to both heterogenous and homogenous assay
formats. FIA is simple, highly sensitive and versatile.
However, FIA requires expensive dedicated instrumenta-
tion, which limits its use in smaller laboratories, nonspe-
cific binding causes quenching and fluorescence
generated is changed (Zhang et al. 2020).

Chemiluminescent immunoassay
Chemiluminescent immunoassay (CLIA) is an immuno-
assay technique where the indicator of the analytic reac-
tion is a luminescent molecule. In general, luminescence
is the emission of visible or near-visible radiation which
is generated when an electron transitions from an ex-
cited state to a ground state. The resultant potential en-
ergy in the atom gets released in the form of light. It is
an alternative to radioimmunoassay as a detection
principle for the determination of molecules (e.g. pesti-
cides, proteins, and environmental contaminants).
Chemiluminescent methods can be direct using lumino-
phore markers (acridinium and ruthenium esters) or in-
direct using enzyme markers (alkaline phosphatase with
adamantyl 1, 2-dioxetane aryl phosphate (AMPPD) sub-
strate and horseradish peroxidase with luminol). Either

method may be competitive or non-competitive
(Dodeigne et al. 2000). The key advantages of chemilu-
minescent analytical methods reside in the wide dynamic
range, high signal intensity, high specificity and rapid ac-
quisition. The disadvantages of CLIA are represented by
limited Ag detection, high costs, limited tests panel and
closed analytical systems (Chen et al. 2012).

Bio-barcode immunoassays
The bio-barcode (BCA) amplification assays are utilized
in the quantitative detection of small molecules, such as
pesticides, veterinary drugs, and environmental toxins.
The technique encompasses the use of two probes: mag-
netic beads coated with monoclonal antibodies for the
protein and AuNP and coated with anti-target protein
antibody and barcode DNA. Then, a magnetic field can
be used to form a sandwich-like complex of the two
probes with a test sample containing a target protein to
form “magnetic microsphere-target protein-AuNP”.
After dissociation of the labelled DNA barcode strands
on the gold nanoprobes via dehybridization elution re-
lease, the target protein content can be determined by
the selected colorimetric, fluorescence labelling, biochip
or other detection methods. Signal amplification detec-
tion methods commonly used for the BCA mainly in-
clude chip methods (Feng et al. 2021), fluorescence
labelling methods (Tabatabaei et al. 2020), biosensor
methods (Zikos et al. 2015) and immuno-PCR methods
(Dahiya and Mehta 2019). BCA has the advantages of
high sensitivity, simple operation, good repeatability and
good linear relationship between detection. BCA has
some drawbacks; their specificity depends on the specifi-
city of the monoclonal antibodies used in the detection
system; however, the relatively high cost of commercial
monoclonal antibodies and polyclonal antibodies will
affect the application of this technology in actual detec-
tion. The preparation of probes takes a long time (Wang
et al. 2017).

Enzyme-linked immunosorbent assay
ELISA is the preferred choice of researchers in order to
detect the presence of OP pesticides. It is highly sensi-
tive, simple to operate and can be detected at very low
concentrations. “Competitive” and “non-competitive” are
the two basic types of ELISA which are based on the
utilization of a limited concentration of available anti-
bodies in the sample. In competitive ELISA, the analyte
and the hapten-carrier protein conjugate react with the
antibodies (Ab) simultaneously, whereas in non-
competitive ELISA, the Ab-binding site will be already
taken, once they are exposed to analytes. Non-
competitive ELISA is found to be more sensitive, has a
wider scale range of detection and has higher selectivity
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as compared to competitive ELISA (Fig. 4) (Cui et al.
2018).
One of the ELISA which is based on monoclonal anti-

bodies was used for the analysis of the chlorpyrifos-
methyl. The reason behind using this technique was that
it is very fast for visual detection of CPF in concentra-
tions of 5 μg/ml, and the I50 value of the ELISA using re-
flectance detection was 75.22 ng/ml, with a detection
limit of 0.32 ng/ml (Qian et al. 2009). Similarly, Cho
et al. developed antigen-coated ELISA (direct competi-
tive assay and indirect competitive method) in order to
detect insecticide chlorpyrifos with I50 of 160 ppb and a
detection limit of 10 ppb. In addition, an antibody-
coated ELISA was also developed, which shows an I50 of
20 ppb with a detection limit of 0.1 ppb (Cho et al.
2002).
Despite rapid screening of different pesticide classes

by immunoassay, the sensitivity for similar types of
pesticide detection is very low. The problem of the
cross-reactivity of ELISA is observed in the same cat-
egory of pesticides that often behave competitively to
antibodies and in few cases even target the carrier

protein which is being used in hapten conjugation (Man-
clus et al. 1996).
Generally, the cross-reactivity is checked using the

analyte’s curve as a standard curve to the other haptens
which are quite similar to the analyte types of haptens,
using analyte concentrations at 50% of the inhibition
curve. Brun (2005) & Cho (2002) developed ELISA for
CPF which showed 66.6%, 15.6%, 4.58% and 3.05%
cross-reactivity with chlorpyrifos-methyl, bromophos-
ethyl, bromophos-methyl and dichlorofenthion, respect-
ively (Cho et al. 2002; Brun et al. 2005).

Recently developed immunoassays—advantages
and disadvantages over classical tests
Immunoassay strategies are generally appropriate for
water-dissolvable, polar pesticides. They can likewise be
essentially quicker than certain regular techniques.
Quantitative immunoassay analysis for pesticide utilized
gas or liquid chromatography measures about five times
the number of samples in the exact time when compared
with conventional methods (Wang et al. 2019). The
quick and exact nature of immunoassays depends on

Fig. 4 A Small molecules can be recognized by antibody but cannot stimulate the immune system to produce antibody. B They must conjugate
with carrier protein to form an immunogen for production of a monoclonal, polyclonal, and recombinant antibodies. C The antibody is a Y-
shaped molecule composed of four polypeptide subunits with two identical heavy and light chains. D Type of immunoassay used for
CPF detection
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various elements. The strategy is quick as few steps can
be avoided in contrast with traditional methods, for ex-
ample the clean-up step can be escaped for aqueous
samples (squeezes and milk), and for fruits and vegeta-
bles, and for qualitative and semi-quantitative immuno-
assays, the detection step may take not over 5 min. For
quantitative immunoassays, the utilization of a microti-
ter plate which carries 96 wells can help in the identifi-
cation and measurement of a big group of samples at
one point in time (Jones et al. 2014). It almost takes ap-
proximately 4 to 6 h to quantify the sample. Though the
immunoassay has various advantages, the use of immu-
noassays for monitoring pesticide residue in food is less
sensitive for some compounds as compared to conven-
tional methods, and they may have lower levels of repro-
ducibility (Li et al. 2016). Assays which involve the use
of different types of antibodies are quite selective in their
approach and they are not appropriate for analysing the
many residues at a time as they give false results. Hence,
one can use them to study many samples in less time
but they detect rarely any pesticides (Ahmed et al. 2020).

Conclusion
Recent advances in computational technologies com-
bined with advances in molecular modelling have the
potential to make important contributions to immuno-
assay design for CPF screening at the community level.
The challenging aspect attributed to immunoassay kits
for CPF has been the design of appropriate linkers that
would aid the binding of CPF with carrier proteins while
keeping the pesticide exposed for achieving immunogen-
icity in animal models. 3D molecule drawing tools and
protein-ligand docking could achieve appropriate linker
design and subsequent ligation with carrier proteins by
exploiting knowledge of the ligand-binding pocket. Ap-
propriate interaction among the CPF-linker-carrier pro-
tein complex (the immunogen) could greatly help in
producing adequate titres of antibodies. In other words,
a CPF derivative design is the most important part of an
immunoassay kit for pesticides such as CPF prior to ex-
perimental validation. Moreover, as the same can be
achieved in silico, a computer-aided approach offers
flexibility to test all possible combinations of CPF deriv-
atives and helps in selecting the best ones for chemical
synthesis, thereby saving both time and money involved
in the immunoassay design. The robust protocol for
computer-aided immunoassay designs illustrated for
CPF could be used as a model for other similar
pesticides.
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