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Abstract

Background: This work reports, for the first time, a validated methodology for qualitative and quantitative
melatonin analyses directly from a complex matrix, namely rat milk, using matrix-assisted laser desorption/ionization
mass spectrometry imaging (MALDI-MSI), in a useful strategy for fast assessment of this molecular species.

Methods: This novel approach uses the imaging feature of a MALDI instrument to create bidimensional images of
a selected area. Results for sample concentration are expressed as a function of pixel-by-pixel intensity in grayscale,
which are quantified according to pixel intensity through ImageJ open source software. For the extent of this work,
two conditions were monitored: light- and dark-obtained milk.

Results: Quantification was performed using the selected reaction monitoring (SRM) transitions m/z 233→174 for
melatonin. Limit of detection and limit of quantification have presented lower values (picomolar) when compared
to other melatonin quantification strategies, indicating that this method presents high sensitivity. Furthermore, this
method has a total analysis time of less than 1 min.

Conclusions: Melatonin concentrations are significantly higher in samples obtained from dark conditions,
consistent with previous results, and thus proving that MALDI-MSI is a suitable, simple, and highly sensitive
methodology for direct melatonin analysis from complex biological samples.
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Background
Melatonin is a secretory product biosynthesized in the
pineal gland, using serotonin as its precursor molecule,
and secreted in a photoperiod-dependent manner
(Axelrod and Weissbach 1960; Reiter 1992; Ackermann
et al. 2007). In most mammals, blood concentrations of
melatonin are increased during dark periods and
present decreased levels during the daylight hours
(Goldman 2001). Functionally, there is great interest sur-
rounding this molecule, since it is known to be a powerful
antioxidant and the main endogenous antihypertensive
agent of the cardiovascular system (K-Laflamme et al.
1998; Galano et al. 2011; Lanoix et al. 2012). Furthermore,

two high-affinity G protein-coupled receptors, MT1 and
MT2, mediate some melatonin’s effects, such as placental
cell survival (Dubocovich and Markowska 2005).
Several studies reported its importance in regulating

circadian rhythm and reproductive events (Tamura et al.
2008; Reiter 1998; Olcese 1995; Malpaux et al. 1999;
Gerlach and Aurich 2000). It is already known, for
example, that there is effective transfer of photoperiod
information from a mother to her fetus, since melatonin
can cross the placental barrier (Yellon et al. 1985;
Okatani et al. 1998). Recent studies have shown radiola-
beled melatonin distributed in the brain of hamsters
during late fetal life, located in the same sites that
present high number of melatonin receptors in adult
hamsters. This information is supported by another
study, where pinealectomized mother hamsters were
not able to transmit photoperiod information to their
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fetuses (Carlson et al. 1991; Weaver and Reppert 1986).
Following this logic, melatonin transfer from the fetus
to the mother has also proven to be feasible. A study
performed melatonin level measurements in pregnant
women blood serum by radioimmunoassay (RIA); indi-
viduals with twin pregnancies have presented maternal
nighttime melatonin serum levels higher than single
pregnancies. These findings suggest that the feto-placental
unit may contribute to maternal circulating melatonin
(Nakamura et al. 2001).
In the late years, the detection and measurement of

this molecule in biological samples has been performed
using several different analytical strategies. Gas chroma-
tography (GC) and liquid chromatography (LC) coupled
to mass spectrometry (MS) have been the most widely
and effectively employed (Jensen et al. 2011; Wang et al.
2011; Kennaway et al. 1977; Lewy and Markey 1978;
Covaci et al. 1999). Among others, mass spectrometry
stands out as a simple and versatile approach, as it can
be used to identify, characterize, and quantify endogen-
ous substances from biological samples. Its many re-
sources for structural elucidation notably increase the
assertiveness of the analysis, as any molecular identity
can be confirmed in just a few steps. Additionally, MS
can be coupled to chromatographic techniques; these
previous separation processes can be widely modified
and/or enhanced in order to assist the analyst to have
great control among the many different species present
in any complex samples, such as biological fluids (Bon-
nefont-Rousselot and Collin 2010). Hybrid MS techniques,
namely matrix-assisted laser desorption/ionization time-
of-flight (MALDI-TOF) have been explored in melatonin
research (Rizzi et al. 2006). For example, Rizzi et al. (2006)
have conducted an investigation in order to understand
the role of melatonin in melanogenesis. They were able to
identify melatonin and its oxidation products by fluores-
cence, UV-visible spectrophotometry, and MALDI-TOF.
A recent variation of the latter has expanded MS limits

to the field of molecular imaging. The technique, known
as MALDI mass spectrometry imaging (MSI), was devel-
oped to identify the spatial distribution of compounds in
any physical sample, such as tissue sections (Solon 2007),
drug tablets (Earnshaw et al. 2010), and cosmetic products
(de Oliveira et al. 2013a). Despite its ingenuity, MSI’s
operating principle is very straightforward: an infrared or
ultraviolet laser beam is focused on a sample and “scans”
all over its extension in quick shots, generating a mass
spectrum in each spot, just like a pixel, forming a molecu-
lar image at the end of the process (Caprioli et al. 1997).
Our group has proposed an innovative study applied to
cosmetic products, which changed the concept of “qualita-
tive analysis-only” for MALDI-MSI. We were able to per-
form a relative quantification of the Sudan III dye directly
in nail polishes, employing ImageJ, a software commonly

used as a tool for western blot quantification (de Oliveira
et al. 2013a; Gassmann et al. 2009).
In the present work, we describe a new and validated

method for melatonin quantification in maternal rat milk
using MALDI-MSI. This methodology comprises both
melatonin detection and quantification with minimal sam-
ple preparation. Method validation was performed using
the melatonin chemical standard, following its application
in samples of maternal milk from rats subjected to
photoperiod.

Methods
Standard preparation
A 50 mM melatonin (Sigma-Aldrich, MO, USA) stock
solution was prepared in ethanol. It was further diluted
with H2O MilliQ to obtain a working solution of 500 μM.
Then, seriated dilutions were performed in H2O milliQ
for recovery experiments and analytical curves.

Animal experimentation
Female Wistar rats at the 10th day of lactation (n = 10)
received an intraperitoneal injection of 500 μL oxytocin
(Sigma-Aldrich, MO, USA) (500 IU), 2 h before milking.
Four to six breasts of each rat were milked, and the con-
tents were pooled to a single sample for each rat. The
milk was collected 4 h before (dark) and 6 h after
(light—control sample) light turned on, corresponding at
1 a.m. and 1 p.m., comprising a total of 10 samples for
each condition (n = 10 for dark and n = 10 for light) All
animal procedures were in agreement with the Ethical
Principles in Animal Research, adopted by the Brazilian
College for Animal Experimentation according to the
American Psychological Association Guidelines for Ethical
Conduct in the Care and Use of Animals. All the study
protocols were approved by the Ethical Committee of the
University of Campinas (Protocol 2804-1).

MALDI-MSI analyses
To perform MALDI-MSI analyses, 1 μL of each sample
and/or standard were mixed in 20 μL of α-cyano-4-
hydroxycinnamic acid (CHCA) matrix (Sigma-Aldrich,
PA, USA) (10 mg/mL in 1:1 acetonitrile/methanol solu-
tion) and spotted in a stainless steel plate suitable for
MALDI-MSI (Thermo Scientific, CA, USA). Chemical im-
ages and mass spectra were acquired in a MALDI-LTQ-XL
instrument equipped with imaging feature (Thermo Scien-
tific, CA, USA). The instrument uses an ultraviolet laser as
the ionization source and a quadrupole-ion-trap mass ana-
lyzing system. All data were acquired in the positive ion
mode with a sample size of 500 × 500 μm (50 pixels). Each
sample was run in triplicates. For image acquisition, a 50-
μm raster width was selected. Selected reaction monitoring
(SRM) data were acquired with transition m/z 233→ 174
for melatonin, using the collision-induced energy (CID) to
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45 eV. Helium was used as the collision gas. Fragmentation
pathways were proposed using Mass Frontier expert sys-
tem software (Thermo Scientific, CA, USA). All imaging
data were then processed using ImageQuest software
v.1.0.1 (Thermo Scientific, CA, USA).

Quantification by MALDI-MSI
Imaging data were analyzed using ImageQuest software
(Thermo Scientific, CA, USA). The quantification was
performed using ImageJ (National Institutes of Health,
USA—Open Source) on grayscale images. The area was
standardized in number of pixels for all the replicates,
and the ImageJ software assigned a value for the selec-
tion based on the intensity of each pixel.

SST
The system suitability test (SST) (Guideline, ICH Har-
monized Tripartite 2005) was performed under the opti-
mized MALDI conditions for the direct detection of
melatonin. The standard solution was analyzed 10 times
in two different days, to verify the instrumental precision
(intra- and interday), determined as relative standard de-
viation (%RSD) of values obtained by ImageJ. Linearity,
expressed as the determination coefficient (R2), was
checked from 0.5 to 2.5 pM and calculated as values
of each concentration against the respective known
concentration.

Method validation
The validation was performed according to the Inter-
national Conference on Harmonization Guidance for the
Validation of Analytical Methods (Guideline, ICH Harmo-
nized Tripartite 2005). It was based on the following cri-
teria: limit of detection (LOD), limit of quantification
(LOQ), precision (intra- and interday variability), recovery,
and linearity. LOD and LOQ were determined in blank
samples of MALDI matrix (CHCA) and/or three mixed
samples of light-exposed maternal rat milk (CHCA +
milk), using the melatonin standard analytical curve as the
response method, with the formulas [LOD= (3.3σ)/S] and
[LOQ= (10σ)/S], where σ is the standard deviation of the
blank and S the slope of the analytical curve. Standard de-
viations of the blanks were calculated by analyzing the
background image of CHCA matrix and the three pooled
control samples in CHCA matrix using ImageJ. External
analytical curves were built using standard solutions
with different concentration levels. Recoveries (%R) were

determined by comparing the absolute response of the
melatonin standard spiked in control samples, using 30
determinations (three concentrations/ten replicates each).
Method precision (intraday and interday precision) was
determined as the relative standard deviation (%RSD) with
three replicates and five concentrations, on two different
days by the same analyst.

Method applicability
The method was applied to maternal milk samples from
rats subjected to photoperiod. Samples were prepared
and analyzed exactly as described above. Melatonin con-
centrations were calculated with external analytical
curves (minimum of 5 points). The latter was built by
spiking control milk with melatonin standard solution
diluted in CHCA matrix.

Statistical analyses
All statistical analyses were performed in GraphPad
Prism v.5.0 for Windows (GraphPad Software, CA,
USA). For standard curve, the linear regression test was
applied, and unpaired T test for establishing the signifi-
cance for light-dark differentiation.
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Fig. 1 Fragmentation pattern of melatonin standard by MALDI-MSI.
a MS2 of precursor ion m/z 233 and b MS3 of its secondary ion m/z
174. All fragmentations were performed with CID of 45 eV

Table 1 MALDI-MSI parameters and instrumental precision (intra- and interday) for melatonin (n = 10)

Molecule m/z [M + H]+ MS2 MS3 m/z 174 Value precision (%RSD)

Intraday Interday

Batch 1 Batch 2

Melatonin 233 174, 205, 215, 191 159, 143, 118, 131 2.52 2.87 1.45
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Results and discussion
Melatonin mass spectrum was determined by perform-
ing MSn reactions using a melatonin standard, as de-
scribed in “Methods” section. The standard was used as
the comparison parameter for molecule identification by
both MS2 and MS3 (Fig. 1). Fragment structures are
available in Supplemental data (Additional file 1: Figure
S1). SST showed satisfactory precision for pixel value de-
termination, both intra- and interday (Table 1). Detector
response linearity was checked using linear regression.
The coefficient of determination (R2) was >0.99 from
0.5 to 2.5 pM. Thus, MALDI-MSI has proven to be a
suitable approach for melatonin quantification directly
from rat milk samples, with no previous sample prepar-
ation. With high precision parameters (<3%RSD, Table 1)
for all cases, this analytical strategy is specific and pre-
cise enough to carry out melatonin quantitative analyses
with total time less than 1 min. Specificity in this case
can be assigned to the possibility of fragmentation reac-
tions (MSn), which are supported by using an external
standard for comparative purposes. This powerful com-
bination of standards and tandem mass spectrometry for
assertive compound identification in complex matrices
has already been extensively discussed in recent litera-
ture (de Oliveira et al. 2013b).
Our validated methodology has demonstrated adequate

values in each of the assessed parameters: recovery, LOQ,
LOD, intra- and interday precision, and linearity. As
shown in Table 2, there was high recovery of melatonin in
all spiked concentration levels. The percentage of recovery
increases as a function of concentration, which can be
expected, since higher concentrations facilitate analyte re-
covery, and results with high linearity indicate high
method accuracy (Guideline, ICH Harmonized Tripartite
2005; González et al. 1999). A good linear relationship

was found between the pixel area of concentrations of
melatonin ranging 0.5–2.5 pM. Linear regression analysis
indicated that the correlation coefficient (r2) was greater
than 0.99, and the regression equation was Y = 13,422X +
63,366 with Y as the pixel area and X as the concentration
of melatonin.
Table 3 presents the LOD and LOQ obtained in two

different conditions: (1) CHCA matrix and (2) maternal
milk + CHCA matrix. The latter presents both limits
higher than the ones obtained only with CHCA matrix.
Both LOD and LOQ for spiked samples in CHCA
matrix alone have presented lower levels when com-
pared to the ones obtained in Milk + CHCA (Table 3).
This is probably due to the fact that milk is a much
more complex system than a simple solution of MALDI
matrix and hence molecular ionization in easier in
simpler environments. However, both were detected at

Table 2 Recovery of melatonin in spiked maternal milk samples
analyzed by MALDI-MSI

Concentration (pM) Recovery %a (mean ± SD)

1.0 91.8 ± 6.3

1.5 97.4 ± 8.5

2.0 98.6 ± 10.3
an = 10

Table 3 Limits of detection (LOD, pM) and quantification
(LOQ, pM) for analysis of melatonin by MALDI-MSI in CHCA
matrix and maternal milk samples

Samples LOD LOQ

CHCA matrix 0.07 0.13

Maternal milk + CHCA matrix 0.10 0.18

Table 4 Intraday and interday value precisions of melatonin
from spiked maternal milk control sample at five levels

Concentration (pM) Precision (%RSD)

Intraday batch 1 Intraday batch 2 Interday

0.5 5.4 4.3 2.9

1.0 3.0 3.6 3.2

1.5 2.2 4.0 3.6

2.0 4.2 1.0 2.5

2.5 8.6 8.7 2.3
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Fig. 2 Representative MS2 spectra of a light-period sample and b
dark-period sample (n = 10/group)
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the picomolar level, so regardless of the system complex-
ity, LOD and LOQ are very satisfactory for both cases.
The intraday and interday precisions for melatonin in
milk are summarized in Table 4 and reveal good preci-
sion of the proposed method, with %RSD values under
9% intraday and less than 4% interday, expressed as
functions of concentrations. Low variations (<15% RSD)
in these measurements significantly increase the method
reliability (Guideline, ICH Harmonized Tripartite 2005).
Quantification by imaging is a very interesting feature

that has been described by Grey et al. (Grey et al. 2011)
and recently implemented in our group in as a relative
quantification approach (de Oliveira et al. 2013a). The
present work has aimed to provide absolute values for
compound quantification by using external standards
and analytical curves. Although this is a usual approach,
a thorough method validation was necessary to be per-
formed. The obtained data not only have presented
satisfactory results in all the analyzed parameters but
have also indicated that MALDI-MSI is a sensitive
methodology, with lower limit of detection when com-
pared to classical techniques, such as LC-MS/MS and

RIA (Rowe and Kennaway 2002; Gomez et al. 2013;
Voultsios et al. 1997).
The above-described method was applied to milk

samples obtained from rats in lactation period sub-
jected to 12 h of photoperiod. All samples were directly
analyzed. Spectra of standard, day and night samples
are available in Fig. 2. All spectra were similar, indicating
that the same compound is being analyzed. Results of
melatonin quantification in light- and dark-period milk
are shown in Table 5 and Fig. 3. Although there was a
small detection of melatonin in control samples (light
period milk), the concentration in dark period milk
was higher.

Conclusions
The present study has demonstrated the detection of
melatonin in maternal milk of rats, both in light and
dark periods. Our results are in accordance with other
already reported, in which melatonin levels in dark
period are higher than light period (Rowe and Kennaway
2002; Eriksson et al. 1998). We have also proposed an
interesting and innovative validated methodology using
MSI, proving that imaging data can be a useful tool for
quantitative purposes.

Additional file

Additional file 1: Figure S1. Fragment structures of (A) MS2 of precursor
ion m/z 233 and (B) MS3 of its secondary ion m/z 174 by MALDI-MSI.
(PDF 16 kb)
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Table 5 Concentration (mean ± SEM) of melatonin in maternal
milk of rats subjected to photoperiod of 12 h

Sample Concentration (pM)

Day (control sample) 0.5 ± 0.2

Night 0.8 ± 0.3

Fig. 3 Quantification of melatonin in light- and dark-period milk
samples (n = 10/group) by MALDI-MSI. Unpaired T test as statistical
test was employed (p < 0.05). Above each bar, there are examples of
the images used for quantification of melatonin on respective samples
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