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Abstract

Cancer stem cells (CSCs), or alternatively called tumor initiating cells (TICs), are a subpopulation of tumor cells, which
possesses the ability to self-renew and differentiate into bulk tumor mass. An accumulating body of evidence suggests
that CSCs contribute to the growth and recurrence of tumors and the resistance to chemo- and radiotherapy. CSCs
achieve self-renewal through asymmetric division, in which one daughter cell retains the self-renewal ability, and the
other is destined to differentiation. Recent studies revealed the mechanisms of asymmetric division in normal stem cells
(NSCs) and, to a limited degree, CSCs as well. Asymmetric division initiates when a set of polarity-determining proteins
mark the apical side of mother stem cells, which arranges the unequal alignment of mitotic spindle and centrosomes
along the apical-basal polarity axis. This subsequently guides the recruitment of fate-determining proteins to the basal
side of mother cells. Following cytokinesis, two daughter cells unequally inherit centrosomes, differentiation-promoting
fate determinants, and other proteins involved in the maintenance of stemness. Modulation of asymmetric and
symmetric division of CSCs may provide new strategies for dual targeting of CSCs and the bulk tumor mass. In this
review, we discuss the current understanding of the mechanisms by which NSCs and CSCs achieve asymmetric
division, including the functions of polarity- and fate-determining factors.
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Review
Introduction
Cancers are composed of a heterogeneous population of
hierarchically organized and functionally diverse cells, in
which cancer stem cells (CSCs) are placed at the top.
CSCs are characterized by self-renewal ability to main-
tain their proportion in tumors and the potential to
differentiate into non-tumorigenic bulk tumor cells
(Schatton et al. 2008). Abundant evidence suggests that
CSCs are responsible for the growth and recurrence of
tumors and their resistance to chemo- and radiotherapy
(Alison et al. 2011; Clevers 2011). The ratio of self-
renewing CSCs and the activity of non-CSCs to de-
differentiate back to CSCs have been correlated with
poor prognosis and clinical outcomes of cancers (Frank

et al. 2010; Pece et al. 2010). Increasing attention is
drawn to the development of therapeutic strategies tar-
geting CSCs, singly or in combination of traditional
treatments targeting bulk tumor masses.
During self-renewal, the potential for both prolifera-

tion and differentiation of the parental cell is retained
in one or both progenies. Many genes and signaling
pathways involved in the self-renewing process of nor-
mal stem cells (NSCs) were shown to be oncogenes
(Shackleton 2010). CSCs in tumors maintain their
population through self-renewal cell division similar to
that of NSCs in tissues (Fig. 1). Both NSCs and CSCs
can self-renew through asymmetric cell division in which
one daughter cell possesses stem cell properties, and
the other undergoes differentiation (Betschinger &
Knoblich 2004; Clevers 2005; Doe & Bowerman 2001;
He et al. 2009; Knoblich 2010; Morrison & Kimble
2006). Through this mechanism, a stem cell can pro-
duce both self-renewing and differentiating cells in a
single cell division. However, both CSCs and NSCs some-
times expand their population under specific processes,
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such as development, tissue injury, and tumor growth
(Doetsch et al. 2002; Kimble & White 1981; Lechler &
Fuchs 2005; Morrison et al. 1997; Wright et al. 2001).
They achieve this task through symmetric cell division,
which generates two daughter stem cells. The balance be-
tween asymmetric and symmetric division is orchestrated
by various regulators in normal tissues and tumor masses
(Morrison & Kimble 2006; Al-Hajj & Clarke 2004; Clarke
& Fuller 2006). Such regulators range from key signaling
mediators such as Wnt, Notch, and Hedgehog to cell cycle
components such as p53 and CDK inhibitors (Al-Hajj &
Clarke 2004; Luo et al. 2010; Orkin & Zon 2008). These
proteins play a crucial role in not only CSC survival but
also other processes, such as the survival and proliferation
of NSCs in hematopoietic, neural, epidermal, and intes-
tinal tissues.

Self-renewal of NSCs through asymmetric cell division
Various tissues maintain their homeostasis by specifying
stem cell populations that function as a reservoir of
tissue-specific cell types. In order to maintain the popu-
lations at constant levels and replenish mature cells as
the need arises, stem cells use asymmetric self-renewal
division which produces one daughter that remains in
the stem cell lineage and the other undergoing limited
rounds of transit amplification and differentiation (Fuchs
& Chen 2013; Rossi et al. 2007; Shepherd et al. 2007).
Many lines of evidence have demonstrated asymmetric
cell division of NSCs in the blood, skin, muscle, gut, and
mammary gland (Lechler & Fuchs 2005; Beckmann et al.
2007; Cicalese et al. 2009; Quyn et al. 2010; Shinin et al.

2006; Wu et al. 2007). Significant similarity was observed
between CSCs and NSCs in the properties and mecha-
nisms underlying cell proliferation, survivals, and self-
renewal cell division (Al-Hajj & Clarke 2004; Reya et al.
2001). For example, most of the signaling molecules crit-
ical in survival and self-renewal of NSC were also found
to be important for CSC survival. These include Wnt,
Sonic hedgehog (SHH), Notch, PTEN, BMI1, p53, and
p21. In addition, NSCs and CSCs share the machinery
that regulates asymmetric self-renewal cell division
(Luo et al. 2010; Orkin & Zon 2008; Pardal et al.
2003). Studies on various cell types revealed that
asymmetric cell division is regulated by two types of
mechanisms, intrinsic and extrinsic (Knoblich 2008).
In the intrinsic mechanism, the cell divides asymmetrically
through unequal distribution of cell-fate determinants in
two daughter cells. In the extrinsic mechanism, exposure
of daughter cells to differential external cues is the key
factor for asymmetric division.

Intrinsic mechanisms underlying asymmetrical cell division
of NSCs
During cell division, a subpopulation of proteins, RNAs,
and other macromolecules in mother cells are inherited
unequally into two daughter cells (Betschinger & Knoblich
2004; Goldstein & Macara 2007; Suzuki & Ohno 2006).
Unequally distributed cellular components include fate
determinants that govern the fates of two daughter cells.
Prior to asymmetric division, these fate determinants are
differentially enriched at either of the apical or basal pole,
in which the mitotic spindle apparatus and centrosomes

Fig. 1 A model for self-renewal of NSCs and CSCs through asymmetric cell division. NSCs and CSCs maintain their populations in tissues or tumors
through asymmetric self-renewal cell division in which one daughter cell possesses stem cell properties and the other undergoes differentiation.
Through this mechanism, stem cells achieve the production of both self-renewing and differentiating cells in a single cell division. The two types
of stem cells are thought to share molecular mechanisms that control asymmetric self-renewal cell division. Generally, asymmetric cell division is
regulated by two types of mechanisms, intrinsic and extrinsic. Modified from (Romano 2009)
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are unequally aligned. Proteins that promote self-renewal
and stemness are recruited to the spindle apparatus at the
apical side which typically faces the outside of the body or
the lumen of internal cavities. In contrast, differentiation-
promoting factors are recruited to the mitotic spindle
located at the basal side toward the basement membrane.
Par-3, Par-6, and aPKC are key polarity-determining

regulators which mark the apical pole (Kaltschmidt et al.
2000; Lee et al. 2006a). Par-3 recruits Inscuteable to the
apical region which, in turn, recruits Pins (Kaltschmidt
et al. 2000; Lee et al. 2006a; Kraut et al. 1996). As Pins is
recruited, the unequal alignment of mitotic spindle is
established along the axis of apical-basal polarity, providing
an infrastructure for unequal cell division (Betschinger &
Knoblich 2004; Wang et al. 2007; Mauser & Prehoda
2012). The positioning of mitotic spindle correlates to the
unequal sizes and molecular compositions of the centro-
somes (Chia et al. 2008; Yamashita & Fuller 2008). The
larger centrosome in the mother cell is inherited to the
daughter stem cell, whereas the smaller centrosome is
inherited to the daughter cell that undergoes differenti-
ation in male Drosophila germline stem cells and in mouse
embryo neural progenitors (Yamashita & Fuller 2008;
Wang et al. 2009). Once mitotic spindle and centro-
somes are properly positioned in an unequal manner,
a set of adaptor proteins, such as Miranda and Pon,
are localized to the basal side of cells (Knoblich 2010;
Bonifacino 2014). These adaptors subsequently recruit
differentiation-promoting fate determinants. The adaptor
Miranda regulates the asymmetric segregation of key dif-
ferentiation factors such as Brat (a translational repressor)
and Prospero (a homeodomain transcriptional repressor)
(Ikeshima-Kataoka et al. 1997; Lee et al. 2006b; Schuldt
et al. 1998; Shen et al. 1997). In Miranda mutants, all three
determinants are uniformly distributed in cytoplasm and
segregate equally into two daughter cells (Betschinger &
Knoblich 2004; Wang et al. 2007). The adaptor Pon also is
enriched in the basal pole and binds to and localizes
Numb, a membrane-associated protein and a negative
regulator of Notch signaling (Lu et al. 1998). Through this
region-specific localization of fate-determining factors,
stem cells predetermine the fates of daughter cells.
During asymmetric cytokinesis, the apical daughter cell,

which is larger in size, inherits self-renew-promoting fac-
tors and remains as the stem cell lineage (Barros et al.
2003; Yu et al. 2006). In contrast, the smaller, basal cell
that inherits differentiation factors, such as Numb,
Prospero, and Brat, undergoes differentiation (Barros
et al. 2003; Yu et al. 2006). Following unequal segregation
into basal daughter cells, Numb induces differentiation by
inhibiting Notch which is enriched in the apical side in
mother cells and segregated into daughter stem cells
(Cayouette & Raff 2002; Verdi et al. 1999; Wakamatsu
et al. 1999; Liu et al. 2010). The division of a Numb-

deficient mutant cell results in two stem-like cells,
whereas the division of a Numb-overexpressing cell
generates two differentiated daughter cells (Le Borgne
et al. 2005; Petersen et al. 2002; Schweisguth 2004).
The transcription factors Pros and Brat, which inhibit
ribosome biogenesis and cell growth, also function as
differentiation-inducing fate determinants (Betschinger &
Knoblich 2004; Lee et al. 2006b; Bello et al. 2006;
Betschinger et al. 2006; Frank et al. 2002). Some of
cell cycle regulators, such as the cyclin-dependent
kinase CDC2 of the fly Drosophila melanogaster, were
shown to be co-segregated with fate determinants into
daughter cells and play a role in their fate determination
(Tio et al. 2001). Aurora and Polo kinases also play a role
in fate determination by inhibiting the excess self-renewal
of neuroblast (Wang et al. 2007; Lee et al. 2006c; Wang
et al. 2006). Mutations of either Aurora or Polo were
shown to cause symmetric cell division by disturbing the
asymmetric localization of fate determinants such as
aPKC, Numb, Pon, and Notch.

Extrinsic mechanisms underlying asymmetrical cell division
of NSCs
Asymmetric cell division is also influenced by the extra-
cellular environment. Stem cells are in close contact
with a special microenvironment, called the stem cell
niche, which is crucial for maintaining the stem cell
identity and the potential to self-renew (Li & Xie 2005).
During division, stem cells ensure that only one progeny
can be in contact with the stem cell niche by keeping
the perpendicular orientation of their mitotic spindle to
the niche surface. The progeny in contact with the stem
cell niche retains self-renewal ability, while the other
undergoes differentiation. Thus, in contrast to the intrinsic
mechanism which usually adopts a predefined program,
the environmental niche-dependent extrinsic mechanism
is relatively flexible (Lechler & Fuchs 2005; Rotundo &
Fambrough 1980). It has been known that the extrinsic
mechanism plays a critical role for the choice of symmetric
or asymmetric divisions in HSCs. HSCs mostly divide
asymmetrically when cultured on the layer of osteoblastic
cells but undergo symmetric cell division on the layer of
stromal cells, suggesting that HSCs control self-renewal
process through interaction with the environmental niche
(Knoblich 2008).

Mechanisms underlying asymmetric cell division of CSCs
NSCs and CSCs share similarity in the mechanisms
underlying proliferation, cell survival, and self-renewal
process (Austin et al. 1997; Ben-Porath et al. 2008;
Bhardwaj et al. 2001; Gotoh 2009; Iliopoulos et al. 2009;
Iliopoulos et al. 2010; Lemischka & Moore 2003; Lessard
& Sauvageau 2003; Shimono et al. 2009; Spink et al.
2000; Taipale & Beachy 2001; Zhang et al. 2003),
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including the role of key regulatory proteins, such as
BMI1, Notch, Wnt, and SHH (Iliopoulos et al. 2010;
Shimono et al. 2009). It is therefore reasonable to specu-
late that the similarity is extended to asymmetric div-
ision as well. Despite the technical difficulty in isolating
CSCs, recent studies began to shed new lights on the
mechanistic details on CSC asymmetric division.
Pine et al. (2010) employed single-cell real-time ana-

lysis to trace the inheritance of genes during cell division
of maternal CD133+ CSC populations isolated from
human lung cancer cell lines and primary tumor cells.
Interestingly, the genomic DNA in maternal CSCs was
found to be unequally inherited to daughter cells.
Daughter cells that inherited more maternal DNA were
found to remain as CSCs, whereas those that inherited
less maternal DNA became differentiated cells (Pine
et al. 2010). One parameter that influences asymmetric
segregation appears to be the microenvironment, such
as cell-to-cell and cell-environment interaction. It was
suggested that asymmetric inheritance is enhanced by
cell-to-cell contact, which is influenced by cell density
and environmental changes, such as serum deprivation
and hypoxia (Pine et al. 2010).
To date, it still remains unknown to what degree the

functions and mechanisms of fate determinants and
adaptors in asymmetric division of NSCs are conserved
in CSCs. Rare examples of molecules known to be un-
equally segregated into daughter cells include midbody
derivatives (MBds), a group of proteins contained in a
large proteinaceous organelle, called the midbody (Kuo
et al. 2011). The midbody is localized in an intercellular
bridge during cytokinesis and thought to play a role in
maintaining the stemness of daughter stem cells. Follow-
ing asymmetric division, the midbody is normally de-
graded by daughter cells destined to differentiation. In
daughter stem cells, however, it is protected from such
autophagic degradation, leading to selective accumula-
tion of MBds. As a consequence, MBds are selectively
inherited to daughter stem cells.
Candidate proteins implicated in asymmetric division of

CSCs include Nuclear Mitotic Apparatus (NuMa), a
polarity-determining factor which is normally associated
with spindle in NSCs and segregated into daughter stem
cells. In NSCs, NuMa plays a role in the concentration of
microtubules in the mitotic spindle poles and the bundling
of the mitotic spindle to centrosomes. The asymmetric seg-
regation of NuMa was similarly observed in Drosophila
neuroblasts (Lechler & Fuchs 2005; Izumi et al. 2006; Siller
et al. 2006). This segregation pattern was found to be
perturbed by the amplification of the ongogene MYCN
which is closely associated with neuroblastoma onco-
genesis, leading to symmetric segregation of NuMa
(Izumi & Kaneko 2012). The asymmetric segregation
of NuMa is likely to play a role in CSCs as well.

It is known that irradiation (IR) treatment reduces
tumor mass but increases the relative portion of CSCs
within tumors. To address the mechanism of CSC enrich-
ment following irradiation, Gao et al. (2013) developed
the cellular Potts model (CPM) of U87-MG human glio-
blastoma cell line, which enhances CSC-driven tumor
growth. The authors found that IR treatment increased
not only the ratio of CSCs in surviving cells but also the
absolute number of CSCs (Gao et al. 2013). One reason-
able explanation for this observation is that in response to
irradiation, CSCs shifted their cell division strategy from
asymmetric to symmetric one. It should be further investi-
gated how CSCs survive chemo- and radiotherapy.

De-differentiation of CSCs
The model that CSCs can repopulate heterogeneous
tumor cells through asymmetric cell division is based on
the assumption that CSCs and non-CSCs are epigeneti-
cally stable and can thus propagate in a mutually inde-
pendent manner. Another possible explanation for how
the net number of CSCs remains constant over multiple
generations in established cancer cell lines or in tumors
is that the epigenetic status of two cell types is flexible
and able to switch from one type to the other. CSCs
may be able to keep their proportion in equilibrium
through these dynamic interactions with nearby bulk
cancer cells in the microenvironment. Indeed, a recent
study showed that the levels of CSCs and non-CSCs in
human breast and prostate cancer cell lines are in dy-
namic equilibrium, in which the proportion of two cell
types remains constant over time and through many
generations (Iliopoulos et al. 2011). The equilibration in
a given time could be regulated by not only formation
and differentiation of CSCs into non-CSCs during sym-
metric and asymmetric divisions but also de-differentiation
of the resulting non-CSCs back to CSCs. The signals that
induce de-differentiation of non-CSCs into CSCs include
secretory factors, such as the cytokine IL6. The actual bal-
ance between CSCs and non-CSCs may be influenced by
the concentrations of secreted molecules and their recep-
tors (Iliopoulos et al. 2011).

Conclusions
Despite abundant knowledge accumulated in cancer
biology and remarkable advancements in clinical transla-
tion, cancer is still one of the most fatal diseases. The
major challenges in cancer treatment are the limited effi-
cacy of chemo- and radiotherapy and the recurrence of
surviving cancer cells. Accumulating evidence suggests
that CSCs contribute to tumor progression and recur-
rence. The identification of pathways and molecules that
support the properties of CSCs may lead to the develop-
ment of CSC-targeting therapeutic strategies that improve
the efficacy of cancer treatment. Such CSC treatments
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may be combined with conventional therapies targeting
the tumor bulk. One key property of CSCs is their ability
to undergo self-renew, which is achieved through asym-
metric division. Extensive studies on NSCs revealed the
mechanisms of asymmetric division which involves a
number of polarity and fate determinants whose spatio-
temporal distribution regulates the fate of two daughter
cells. Although it is technically challenging to isolate
CSCs, NSCs and CSCs will prove themselves to share
similarity in the mechanisms underlying asymmetric div-
ision. Continued research on the regulation of asymmetric
and symmetric self-renewal division of CSCs will provide
a means to target CSCs in various tumors.
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